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Abstract
With the introduction of GDPR, the domains serving content to EU-based users have
been forced to eliminate, or at least reduce, user tracking activities. Following this leg-
islation, a considerable portion of websites has started showing Cookie Privacy Warn-
ings, prompting their visitors to agree to the use of technologies, mostly HTTP cook-
ies, aiming at monitoring user behavior and collecting personal data. The goal of this
study is to measure how user interaction with these privacy warnings affects the track-
ing environment developed around that user. To that end, a privacy research platform,
called Cookie Crumble Tracer (CCT), has been created. CCT is a Selenium-based
crawler that visits the top 1000 most popular domains according to Tranco ranking.
While crawling these websites, CCT interacts with the aforementioned GDPR Cookie
Privacy Warnings to either agree (opt-in) or disagree (opt-out) to the server setting
tracing cookies. By doing so, CCT is capable of measuring how the user’s privacy pol-
icy affects the characteristics of cookies saved in the browser and the outgoing HTTP
traffic. This information is then used to create network graphs representing the track-
ing ecosystems for opt-in and opt-out policies. CCT constructs two types of graphs -
Publishers-Trackers (PT) and Trackers-Trackers (TT). PT graphs represent the connec-
tions between the trackers and the publishers hosting them. TT graphs represent pairs
of trackers that perform cookie synchronization - a mechanism trackers use to share
user identifying data. CCT finds that around 50% of the analyzed domains contain a
GDPR Cookie Privacy Warning. By using graph analysis in form of various centrality
metrics, CCT finds that opting out can reduce the amount of data shared between the
trackers by 40% and the number of collaborating third-party pairs by 35%. Opting out
also decreases the size of the tracking ecosystem, reducing the number of trackers by
38% in PT graphs and 17% in TT graphs. However, it is found that the user’s cookie
policy seems to have no significant effect on the structure of the online ecosystem,
and poses no threat to the dominance of well-known companies, such as Google or
Facebook.

i



Acknowledgements

First and foremost I would like to express my deepest appreciation to my supervi-
sor, Prof. Kami Vaniea, for her continuous support and invaluable advice during this
project. Her knowledge and academic experience helped me to formulate my research
goals and motivated me at every step of my research.

Second, I would like to thank my Mother, whose relentless support and candid com-
ments have always encouraged me to raise the bar higher. I will never be able to
express my gratitude for the countless times she helped me throughout my journey at
the university and beyond.

Finally, I cannot express enough thanks to my Father. His hard-working personality,
wisdom, and outstanding conscientiousness will always lead by example and drive me
to excel at whatever I do. Dad, I can only hope I am making you proud.

ii



Table of Contents

1 Introduction 1

2 Background 4
2.1 GDPR Enforcement and Online Privacy . . . . . . . . . . . . . . . . 4
2.2 Cookies and Modern Vision of HTTP . . . . . . . . . . . . . . . . . 4

2.2.1 Types of Cookies . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Cookie Synchronization . . . . . . . . . . . . . . . . . . . . 6

2.3 Related Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Ethical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Design and Implementation of Research Platform 9
3.1 Cookie Crumble Tracer Design . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Simulating Real User-Browser Interaction . . . . . . . . . . . 9
3.1.2 Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.3 Locating Cookie Privacy Warnings - Recall over Precision . . 10

3.2 Cookie Crumble Tracer Implementation . . . . . . . . . . . . . . . . 11
3.2.1 Automating Web Browser . . . . . . . . . . . . . . . . . . . 11
3.2.2 Analysed domains . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.3 Visiting Domains and DOM Interaction . . . . . . . . . . . . 12
3.2.4 Ensuring Fault Tolerance with Incremental Code Execution . 13
3.2.5 Round 1: Locating Cookie Privacy Warnings . . . . . . . . . 13
3.2.6 Round 2: Locating Clickable Elements . . . . . . . . . . . . 16
3.2.7 Round 3: Collecting Data on the Tracking Environment . . . 19

3.3 Cookie Crumble Tracer Evaluation . . . . . . . . . . . . . . . . . . . 21
3.3.1 System Stability . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 Loading Web Pages . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.3 Identifying Privacy Warnings and Clickable Elements . . . . . 22

4 Results and Data Analysis 23
4.1 General Cookie Characteristics . . . . . . . . . . . . . . . . . . . . . 23
4.2 Creating Network Graphs . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Analysing Publishers-Trackers Graphs . . . . . . . . . . . . . . . . . 29

4.3.1 Centrality Metrics . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Correlation of Centrality Metrics . . . . . . . . . . . . . . . . 33

4.4 Analysing Trackers-Trackers Graphs . . . . . . . . . . . . . . . . . . 33
4.4.1 Centrality Metrics . . . . . . . . . . . . . . . . . . . . . . . 34

iii



4.4.2 Correlation of Centrality Metrics . . . . . . . . . . . . . . . . 36

5 Future Work 37

6 Conclusions 39

Bibliography 41

iv



Chapter 1

Introduction

The last several months, heavily influenced by worldwide pandemic, have certainly
proved one thing - there is hardly anything that the Internet fails to provide. Whether
it is making groceries or attending a university - the spectrum of possibilities available
through the World Wide Web has been a blessing to many of us. However, there is one
commodity, which - even though in high demand - seems to be notoriously unavailable
via that ever-growing network.

Privacy

The dependence on electronic devices, interconnected and communicating online, moved
a formidable part of our lives into the digital domain. As the pool of web users grew,
the economic and political incentives encouraged some parties to use that environment
for profit or political advantage. Nowadays, entire business models have been formed
around collecting and sharing user data, often treated as a company’s economic asset.
This has led to the development of sophisticated tracing technologies, which, for a user
with no technical background, are hard to remove or even detect. HTTP Cookies is one
of the web technologies adopted for user tracking. Even though cookies are critical to
providing a good user experience in multiple web services, such as social networks or
online retail, they are also the most widely used method of tracing online activity [1],
and may be used to collect Personally Identifiable Information (PII) [2].

To address the issue of online privacy, policymakers have been trying to come up with
legislation aiming at maintaining user privacy online and increasing the transparency
of tracking. Arguably the most famous, and the strictest legislative data protection
framework to date, is the European Union’s General Data Protection Regulation. The
main goal of GDPR is to broaden the scope of personal data and limit user tracking
activities. Furthermore, it requires the websites to receive online visitors’ informed
consent, in form of affirmative action, for any potential tracking, data collection, or data
sharing they may do [3]. To comply with the rules outlined by GDPR, internet domains
of companies operating within the European Economic Area started displaying Cookie
Privacy Warnings asking for user consent to data collection and profiling techniques.

The influence of GDPR on the online advertising and tracking ecosystem has been a
subject of many studies, most important of which are detailed in Chapter 2. Previous
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Chapter 1. Introduction 2

work (e.g., [4], [5] [6]) have researched the aftermath of GDPR and its effect on online
surveillance ecosystem, showing a reduction in tracking. Other studies, such as [4],
have shown that not all domains comply with new legislation - around 50% of domains
still set tracing cookies before the user’s consent. There has also been research into the
evolution of general structure of tracking ecosystem over the past few years (e.g., [3],
[7], [8]).

The goal of this study is fundamentally different from all the previous work that has
been done - instead of focusing on the large-scale view of the post-GDPR world and
collecting data from a large group of users whose browsing pattern is unstandardized,
the focus is put on an individual user. How, using the opportunities provided by GDPR,
can the individuals affect the tracking ecosystem that gradually builds around them as
they surf the web? How can their individual decisions to accept or reject cookies im-
pact the frequency with which trackers share the information about them? To answer
these questions, a specialized research platform has been developed, allowing for the
detection of user tracking and identification of parties that exchange personally identi-
fiable user data. This tool, whose design and implementation is discussed in Chapter
3, is named Cookie Crumble Tracer, or CCT for short. CCT is capable of controlling a
Chrome browser to simulate human-like behavior and interact with the aforementioned
privacy warnings introduced by GDPR. When interacting with these banners, CCT ei-
ther agrees (opts in) or refuses (opts out) to accept any non-necessary cookies. It then
analyzes the network traffic coming from the user’s browser, as well as saved cookies,
to detect privacy intruding activities. By repeating this procedure over the set of most
popular domains, CCT is capable of measuring the extent to which user’s decision to
accept or reject cookies influences their tracking ecosystem.

Figure 1.1: Network of Publishers and
Trackers when the user opts out and re-
jects as many cookies as possible

Figure 1.2: Network of Publishers and
Trackers when the user opts in and ac-
cepts as many cookies as possible

Each of the above figures presents a network model of publishers and trackers, basing
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on data collected and analyzed by CCT. Green dots are the publishers - domains a user
explicitly visits. Red dots, on the other hand, are the trackers - domains embedded
within publishers and setting tracking cookies in the user’s browser. The network on
the left presents a tracking ecosystem created around a user who consistently opts out
from accepting all non-mandatory cookies. The one on the right presents the same net-
work, but for a user opting in and hence accepting all possible cookies. The difference
seems to be self-evident - a decision to accept or reject non-essential cookies affects
the tracking ecosystem, increasing the number of observed trackers. What about the
structure of that tracking ecosystem? In this study we dig deeper, trying to answer
even more specific questions. What are the most important nodes within the network?
Which trackers exchange the most information? How does the user’s interaction with
Cookie Privacy Warnings affect the network of trackers and publishers?

To answer these pressing questions, CCT crawls the set of top 1000 most popular
domains 1 to locate the GDPR privacy warnings and their elements responsible for
saving user’s privacy settings. By interacting with these cookie dialogues, CCT in-
fluences the number and characteristics of cookies saved on the browser, as well as
network traffic, which is then analyzed to detect any data sharing among potential pri-
vacy intruding parties. Using this data, CCT creates network graphs representing the
tracking ecosystem. In addition to Publishers-Trackers network graphs, examples of
which have been presented in Figures 1.1 and 1.2, CCT also creates Trackers-Trackers
graphs, which represent the network of domains performing Cookie Synchronization -
a hard-to-detect mechanism, allowing the trackers to share user identifiable data and
perform server-to-server user database merges. To create the Publishers-Trackers net-
work graphs CCT clears the browser from any cache or cookies remaining from visits
to the previous websites, thus making the websites visits independent from each other.
However, this policy changes when creating the Trackers-Trackers graph. In this case,
CCT wants to exploit the cross-domain tracking capabilities of cookies, hence they are
not cleared in between websites visits 2. Having created these network graphs, CCT
deploys various graph mining tools and metrics, such as (but not limited to) clustering
coefficient, density, and degree centrality, to study the influence of user’s cookie policy
(either opt-in or opt-out) on the structure of the tracking ecosystem.

CCT findings, presented in Chapter 4, show that around 50% of all analyzed domains
contain a GDPR Cookie Privacy Warning and around 90% of the domains set a poten-
tially tracking cookie before any website interaction. The analysis of network models
points out that user’s decision to opt out can reduce the number of trackers in the
ecosystem by 38%, and the number of collaborating third-party pairs by 35%. Opting
out also reduces the amount of observed data sharing by 40%. However, the general
structure of the tracing ecosystem is not significantly affected by the user’s cookie pol-
icy, with well-known companies such as Google or Facebook firmly occupying the
most important positions in the network.

1According to a ranking called Tranco, which is discussed in Section 3.2.2 on page 11
2The details of gathering the privacy data used for network graph creation are presented in Section

3.2.7 of Chapter 3, page 19



Chapter 2

Background

The following sections introduce background information and the context in which this
study is placed. We start with a brief introduction to the policies aiming at preserving
users’ privacy on the Internet, carrying on to the technical background describing the
use of cookies as a tracking and profiling technology. Finally, to show the uniqueness
of this work, we present and discuss related literature from the past.

2.1 GDPR Enforcement and Online Privacy

General Data Protection Regulation [9], or GDPR for short, has been introduced to
address the international aspects of the World Wide Web and to standardize data pro-
tection laws between its member states. This new legislation came into effect on May
25. 2018, introducing ground-shaking changes to how personal data can be collected,
stored, processed, and shared. GDPR served as a follow-up to the ePrivacy Directive
(ePD), known as The Cookie Law, which made it mandatory to ask for user’s con-
sent before storing or accessing any non-necessary data. As a consequence of ePD,
domains accessible from within the EU started showing banners asking the visitors
for their consent or informing them about the use of cookies. With GDPR further
regulating the definition of user’s consent, from that point on it is defined as a clear, af-
firmative, purpose-specific, and informed indication of agreement to the processing of
personal data [9]. This new definition has ultimately forced domains operating within
the EU to display a new generation of Cookie Privacy Warnings, which now require the
user to give consent before interacting with the website, usually by clicking a button
or submitting some kind of a form. An example of a GDPR Cookie Privacy Warning
is presented in Figure 3.4 (page 18).

2.2 Cookies and Modern Vision of HTTP

HTTP, or Hyper Text Transport Protocol, is an application layer protocol and the net-
working language behind each browser. Initiated by Tim Berners-Lee at CERN as
part of the WWW project, this protocol is used to request web page content from the
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Chapter 2. Background 5

server. As HTTP was primarily designed to be fast and efficient, it is a stateless pro-
tocol, i.e. each HTTP request has no memory of the previous requests to the same
server. This means that sessions could not be initially supported by HTTP, leading to
the introduction of session cookies in 1994, which act as a state management mecha-
nism for the normally stateless protocol. Cookies are essentially small text files, up to
4096 bytes, installed on the client’s side. They contain name=value pairs and meta-
data, for example an expiration date. Cookies are usually set on the first visit to the
domain, and can be installed in the browser in two different ways: an API call to the
server performed by embedding JavaScript in the website’s source code, or through the
Set-Cookie header of an HTTP response. In both cases, these files are stored by the
browser to be sent back on subsequent requests to the server. The decision on whether
or not a cookie should be included in the HTTP request is done based on attributes
Expires, Max-Age (or both), which specify the time after which the cookies should be
deleted.

2.2.1 Types of Cookies

Cookies have multiple applications, all of which operate thanks to the cookie’s core
functionality - enabling the server to modify its actions based on the information con-
tained within the cookie file. Session cookie may allow a server to authenticate the
user and keep him logged in until the browser is closed. By keeping the cookies even
when the user exits the browser, cookies can be utilized by the server to serve the client
with personalized content, for example, website language - in this case, we deal with
personalization cookies.

Tracing cookies, which among others allow for collecting and analysis of client’s data,
are the main focus of privacy-focused research. While cookies used for authentication
purposes are only set at the moment of logging in and are kept in short-term volatile
memory, tracing cookies are persistent, meaning that once issued, they are stored on
non-volatile memory for a long period.

Relevant to our study is the notion of first-party and third-party cookies. First-party
cookies are stored on the client’s side by the host domain, which is the domain the user
explicitly visits. These cookies are supposed to facilitate the user experience of web
surfing, for example by enabling the browser to remember which items a user added to
the shopping cart.

Third-party cookies are considered more privacy-intruding. A third-party cookie is
one created by a domain different than the one explicitly visited. Third-party cookies
embedded across multiple websites may origin from the same domain, for instance,
the same ad network, which allows the third-parties to use a single tracing third-party
cookie across many domains. By setting the Referrer HTTP header to the address
of the domain from which the request originated, third-parties can analyze the user’s
cross-site browsing pattern and learn their browsing history.

An important concept in the area of third-party cookies is the Same Origin Policy. This
security mechanism allows a document, script, or any other resource loaded from one
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origin to interact only with objects and resources from the same origin 1. It helps to
isolate potentially malicious documents and prevent them from accessing other web
pages’ data through its Document Object Model. 2

2.2.2 Cookie Synchronization

Cookie Synchronization is a mechanism used to bypass the above Same Origin Pol-
icy. Cookie synchronization relies on tracking domains sharing pseudonymous IDs,
stored in cookies and associated with a specific user, amongst each other. According
to Google’s developer guide to cookie synchronization, this mechanism provides a way
for domains, which normally cannot read each other’s cookies, to share cookie values
and improve user targeting. Cookie synchronization is mostly a three-step process.

1. User makes a direct visit to a host domain, call it host.org. A script from one
third-party, say foo.org, is loaded into host’s website DOM.

2. The request loading the script is then redirected, or the embedded script belong-
ing to foo.org makes a separate request to a partnering third-party, let’s call
it dummy.com. This redirected/new HTTP request contains the unique ID that
foo.org assigned to the end user. Through the aforementioned HTTP Referrer
header filed, dummy.com knows that the user with that specific ID has visited
host.org.

3. If dummy.com has already stored a cookie on the client’s side (because that user
could have visited another website with cookie-requesting scripts belonging to
that third-party), dummy.org is capable of pairing the ID assigned to the client
by foo.org with its identification number.

In this way, foo.org and dummy.com can exchange the information they have on a
particular user over a separate channel, which neither the website publisher nor the
tracked user is aware of. This technique has been criticized from the point of preserving
individual’s privacy on the Internet, as no user consent is required for the third-parties
to share profiling data.

2.3 Related Research

The introduction of GDPR has been the motivation behind numerous studies focused
on investigating the evolution of the tracking ecosystem and the impact of this legis-
lation on individual’s privacy. Dabrowski et al. [4] assessed the impact of GDPR on
browser cookie setting behavior. In their study, cookies were collected from Alexa Top
100,000 websites by accessing these domains both from within and outside the Euro-
pean Economic Area. Furthermore, the changes in cookie setting behavior between
the pre and post-GDPR era have been investigated by comparing the results from 2018
with the data set created in 2016. Dabrowski et al. found that only 12.4% domains

1Two URLs have the same origin if the protocol, port, and host are the same for both. [10]
2In the context of cookies, Same Origin Policy means that if facebook.com sets a cookie, only

facebook.com can access and read it.
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restricted its cookie storing when accessed from within the EEA, relative to when ac-
cessed from the USA. This study concluded that 49.3% of cookie-using websites from
the Alexa Top 1000 websites, and 26% of Alexa Top 100,000 ranking, refrain from
setting cookies without the user’s consent when facing an EU visitor. Moreover, ac-
cording to the study, due to the legal impact of GDPR, 46.7% of the top 100,000 web-
sites have refrained from installing non-consensual cookies as compared to the study
from 2016.

Other studies have focused on measuring websites’ compliance with GDPR. Trevisan
et al. [11] performed a study shortly after GDPR came into effect and analyzed more
than 35,000 websites, concluding that 49% of the visited websites do not comply with
the legislation. In this research, a manual study on cookie banners has been performed
to analyze the storage of cookies after the user’s consent. It has been observed that 28%
of studied domains do not provide any cookie notices and out of the 72% remaining,
only 7% do not store any cookies before the user decides on the consent. Degeling et
al. [5] quantified the privacy policy changes on Top-500 domains of 28 EU countries.
Their work reports that 85% of these domains have a privacy policy. It also points
out that GDPR has not significantly changed how third-party cookies are utilized. The
lack of significant changes in the general state of the web has also been reported by
Sorensen et al. [6], who measured the changes in the presence of third-parties due to
GDPR, showing that it has a potential effect only on specific types of domains, such as
retail or entertainment.

Particularly important to this work are studies which use network graphs, such as the
ones visualized in Figures 1.1 and 1.2, to dissect the online tracking ecosystem and
analyze its inner mechanisms. In that direction, Solomos et al. [3] constructed bi-
partite (two modal) graphs connecting third-parties with their hosts, for different time
snapshots. Then, based on these ”publishers-to-trackers” networks, their study utilized
a process known as bipartite graph projection, to extract ”tracker-to-tracker” graphs
from the original, ”publishers-to-trackers” ones, connecting third-parties sharing com-
mon hosts, thus revealing potential collaborations. These graphs are then compared
with datasets of parties performing cookie synchronization in the past, revealing a 47%
to 81% overlap. Just like Solmos et al., Kalavri et al. [7] also creates a bipartite, two
modal graphs, based on real user traffic logs, representing relations between embedded
third-parties and their hosts. Their analysis focused on communities formed by graph
vertices and showed that third-parties are well connected since 94% of them are in the
network graph’s largest connected component. Urban et al. [12] used emulated users
located in 20 countries within European Union to collect behavioral data and create a
cookie synchronization graph connecting third-parties that have been observed to use
this data sharing mechanism. Their study reports that, although GDPR does not signif-
icantly affect the structure of the online tracking ecosystem, it has a significant impact
on the number of observed cookie synchronizations, which decreases by 40%.

This study takes inspiration from many of the works described in the paragraph above.
Similarly to [3], the collected data is used to create bipartite graphs presenting host
domains with embedded third-parties. Unlike their study, however, we do not artifi-
cially create another, ”trackers-to-trackers” graph, out of them. Instead, an algorithm
is crafted to separately detect cookie synchronization and use that data to create the
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corresponding network graphs. In that regard we take the approach similar to [12] and
[8]. However, there is one aspect that distinguishes this study from all the previous
ones, making it unique in this area. The aforementioned pieces of work were longi-
tudinal studies, in which data was collected by using traffic logs of many individuals,
who volunteered for these experiments. It has not been documented what the policy to-
wards cookies these users had, and certainly, this policy was not consistent among the
participants 3. For this reason, this study focuses on a single user and tries to measure
how a consistent cookie policy of an individual person affects the state of the unique
online tracking ecosystem which that person builds around themselves.

2.4 Ethical Considerations

The methodology of data collection in this study does not involve any human subjects,
and is based on entirely passive web behavior - it only involves visiting websites avail-
able to the general public, interacting with their cookie warning dialogues, and finally
investigating the files stored on the researcher’s machine. This study’s presence on the
Web is limited to the most popular domains only and their main pages. Such a limited
browsing pattern, considered as standard user behavior, has no possibility of collecting
any personally identifiable information and presents no harm to the websites’ publish-
ers. What is more, to collect the data, we only visit a set of carefully chosen websites,
therefore we do not perform any sort of web crawling or indexing. Hence, in this
research, we do not adhere to the specifications of robots.txt files.

3By ”policy towards cookies” we mean the way the users interacted with GDPR Cookie Privacy
Warnings. The aforementioned studies did not document which users opted out, and which decided to
opt in.



Chapter 3

Design and Implementation of
Research Platform

One of the main contributions of this research is the design and implementation of a
platform capable of simulating human-like behavior and measuring how interaction
with Cookie Privacy Warnings impacts the network of publishers (first-party domains)
and trackers (third-party domains collecting information on user’s activity). The basis
for detecting user tracking activities, such as assigning a pseudonymous ID or ex-
changing personally identifiable data, were cookies set on the user’s browser. Hence
the platform has been named Cookie Crumble Tracer, or CCT for short. CCT is pri-
marily a web crawler that visits a set of predefined domains and interacts with Cookie
Privacy Warnings, if present, to manipulate both the cookies set on the client’s browser
and the HTTP requests that the browser makes.

This chapter first describes the decision-making process and lays out the requirements
for the research platform. The focus then shifts to the implementation, system struc-
ture, and the technology stack used while creating CCT. Finally, the platform is evalu-
ated with respect to its initial requirements.

3.1 Cookie Crumble Tracer Design

3.1.1 Simulating Real User-Browser Interaction

To reliably collect relevant data, CCT had to simulate a human-like web browsing ex-
perience. This requirement’s importance cannot be underestimated. Some browser au-
tomating tools used for privacy-related studies (e.g., [4]) use stripped-down browsers,
such as PhantomJS [13], hence compromising fidelity for speed [14].

The decision to make such a compromise has an important consequence - the web-
server to which a request is made might detect strange, nonhuman browser activity
and respond with content modified relative to what a normal user would receive. En-
glehardt and Narayanan [14] have previously tested the importance of using a com-
plete browser in privacy-related research requiring human-like activity. They com-

9



Chapter 3. Design and Implementation of Research Platform 10

pared PhantomJS, the aforementioned headless browser for automating website ac-
tivity, with OpenWPM - a tool reproducing human browsing experience using a full-
fledged browser. According to this study, PhantomJS loads around 30% fewer HTML
files and about 50% fewer resources with plain text. Particularly interesting for our
study is the fact that many sites don’t serve ads to PhantomJS. This hints that using a
headless browser not only affects cookies set on the client’s browser but greatly lim-
its the number of third-parties embedded on visited websites. This makes headless
browsers completely unusable for our study, forcing us to create a research platform
with a standard browser at its core.

3.1.2 Fault Tolerance

Cookie Privacy Warnings use a wide range of technologies, thus forcing the behavior
of these dialogues to be different across the web. For example, some domains embed
their warnings within HTML iframe elements, so that their creation can be outsourced
to specialized providers. Moreover, the HTML code corresponding to the banners is
often loaded asynchronously from the website’s main content, which in practice means
that a user (and hence CCT) has to wait for a second or two before it shows up.

The inconsistency of solutions present in the domains visited by CCT makes runtime
exceptions difficult, if not impossible, to prevent. A robust system has to be capable of
catching these runtime exceptions and handling them to ensure consistency of collected
data. Fault tolerance means that even if a failure occurs, the entire process of collecting
data relevant to this study does not have to be started from scratch, and that edge cases
are taken care of. In practice, whenever a failure occurs, the system should be able to
resume working from some not too distant checkpoint, using data written to the disk
at regular intervals.

3.1.3 Locating Cookie Privacy Warnings - Recall over Precision

Key functionality of CCT is the ability to demonstrate a consistent cookie policy -
either opting in or opting out - by interacting with the Cookie Privacy Warnings. How-
ever, to accurately define which buttons are responsible for opting in or out, HTML
elements corresponding to the privacy warnings have to be first located.

Interacting with the cookie banners influences the cookies set on the client browser
and third-party activity. Hence, it is the interaction with these banners which makes
the datasets of collected cookies for opt-in and opt-out policies differ from one another.
Thus, when it comes to locating the banners, the system design prioritizes recall over
precision. With low recall and high precision, CCT would locate and interact with
a tiny portion of actual cookie warnings, hence making the collected datasets similar
for each cookie policy. With low precision yet high recall, the system would locate
and interact with a high portion of cookie warnings, but it would additionally inter-
act with HTML elements which are false positives. However, the latter case does not
negatively impact the collected data, as interaction with an HTML element which is a
false positive would not affect the cookies set on the user browser. Ideally, the system
would have both high recall (so that the datasets for both cookie policies are maximally
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different) and high precision (for efficiency, so that no resources are wasted for inter-
action with elements that are not cookie banners). However, from these two measures,
only a compromise in recall would harm the final data, therefore high recall in locating
Cookie Privacy Warnings is a priority.

3.2 Cookie Crumble Tracer Implementation

3.2.1 Automating Web Browser

As outlined by Englehardt and Narayanan, there exist numerous platforms for automat-
ing browsing activity for privacy-related research [14]. Such systems include FPDetec-
tive, which uses a hybrid PhantomJS and Chromium-based automation infrastructure
[15] to detect and analyze browser fingerprinting. Another popular privacy measure-
ment platform, OpenWPM, enables a wider spectrum of privacy measurements, for
example, cookie respawning. Previously used privacy measurement platforms usually
focus on detecting and analyzing specific tracing technologies, without any actual in-
teraction with the visited domains. This deems these tools unsuitable for our study,
as interacting with DOM elements corresponding to the Cookie Privacy Warnings on
visited websites is at the very core of this work.

As explained in Section 3.1.1, one of the most important requirements for CCT is the
ability to simulate a human-like browsing experience. Selenium, a lightweight frame-
work for performing functional tests of web applications, is a perfect match for that
requirement. Selenium supports the automation of popular browsers, such as Chrome
or Firefox, by using a WebDriver. WebDriver is a protocol with an exposed API,
providing a language-independent interface for controlling web browsers, just like a
human actor would [16]. Selenium allows for easy interaction with and manipulation
of the Document Object Model elements of visited domains through the provided API,
making it a perfect tool for this research. Selenium is not a headless browser, making
it significantly more difficult for a server to detect automated browsing.

According to the documentation, Selenium supports the automation of all major web
browsers, each of which is backed by a dedicated WebDriver implementation. A nat-
ural choice was to use the platform with the largest browser market share worldwide.
With around 64% [17], Chrome was an obvious choice. Although focusing on using
one specific user agent might be seen as a limitation of CCT, using Chrome allows
maximizing the user group whose browsing experience is reproduced by CCT. An-
other important reason for using Chrome as CCT’s user agent was Chrome DevTools
Protocol - API for instrumenting and interacting with the browser. Chrome DevTools
Protocol commands can be executed directly by Selenium WebDriver, thus providing
a reliable way of extracting first and third-party cookies from the browser.

3.2.2 Analysed domains

Another important decision concerned the source of websites which CCT will crawl
and on which user tracking data will be collected. The most widely used list of popular
websites, utilized by studies such as [4], [14], [11] or [5], is the one created by a
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commercial publisher Alexa, an Amazon company. An obvious disadvantage of the
Alexa Top One Million list is its lack of stability - since 30 January 2018, almost
50% of this list’s entries change every single day. What is more, according to the
study carried out by Pochat et al. [18], lists such as Alexa Top One Million or Cisco
Umbrella can be easily manipulated, which in turn makes them an unreliable source
for data on which privacy-related research is based, as the measurements are difficult
to repeat. In their study Pochat et al. present a new website popularity ranking called
Tranco, a ”research-oriented top sites ranking hardened against manipulation” [18].
Tranco revises and improves four other popularity rankings, considered to be the most
important ones - Alexa, Cisco Umbrella, Quantcast, and Majestic.

Although Tranco provides a list of the top one million websites ranked by popular-
ity, only the top one thousand domains are considered in this study. It is believed
that collecting data from this subset of domains will give results representative of the
real tracking ecosystem that a European user present on the Internet is surrounded
by. Moreover, according to [3], the cumulative number of trackers observed while
crawling top domains is not linear to the number of domains visited, i.e. most dis-
tinct trackers will be embedded on a small subset of websites. Limiting the number
of crawled domains to 1000 should therefore not significantly decrease the number of
observed trackers.

3.2.3 Visiting Domains and DOM Interaction

The technology pool of the modern web is vast, thus making errors difficult to prevent.
AJAX, or Asynchronous JavaScript and XML, has proved to be one of these error-
incurring technologies. AJAX allows for asynchronous requests and data retrieval
from the server. In practice, AJAX decouples data interchange from the presentation
layer, allowing web pages to change their content without reloading the entire page.
Loading of Cookie Privacy Warnings is often achieved using AJAX, allowing the web
publishers to load them asynchronously on their domains 1.

The existence of AJAX means that it cannot be determined whether or not a given do-
main contains a Cookie Privacy Warning immediately after Selenium finishes loading
that website’s DOM. If we did so, asynchronously loaded cookie warnings could be
excluded from the DOM elements that our platform analyzes because they have not
been loaded yet. Hence, the number of domains classified as false negatives would
increase which as described in Section 3.1.3 is not acceptable.

Asking Selenium WebDriver to retrieve an element which is not a part of DOM throws
NoSuchElementException (or StaleElementReferenceException if that element
is no longer a part of DOM). If not guarded against, such runtime exceptions crash
the platform. To safeguard against AJAX and any asynchronously loaded content, we
use a simple heuristic approach - waiting, even if Selenium seems to finish loading
the domain. For this purpose Selenium provides ”explicit waits” - code structures one
defines to wait for a certain condition to occur before moving on in the code. To achieve
that, Selenium provides WebDriverWait and ExpectedCondition. Exemplary code

1This is often a byproduct of outsourcing the creation of these banners to other companies.
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structure guarding against asynchronously loaded content is presented in Figure 3.1.

Figure 3.1: Code snippet guarding against asynchronously loaded content, taken from
the implementation of CCT. Selenium WebDriver waits until an element is located by
given CSS selector, with timeout set to 10 seconds.

3.2.4 Ensuring Fault Tolerance with Incremental Code Execution

As mentioned in Section 3.1.2, CCT has to be robust and fault-tolerant. The plat-
form must ensure consistency of behavior and collect data even when facing tech-
nologies unaccounted for. To achieve this goal, several mechanisms have been put in
place. First one, and the most obvious, is catching runtime exceptions, such as the
aforementioned NoSuchElementException or TimeoutException, using language-
specific exception handling blocks. However, a more important measure aimed at
ensuring robustness and fault tolerance is the platform’s architecture.

CCT makes multiple crawls of analyzed domains to perform different sets of actions.
In the very beginning, the platform was being developed as a single script. Its initial de-
sign envisioned CCT crawling a list of websites, performing a set of activities on each
of them - locating privacy warnings and clickable elements responsible for accepting
or rejecting cookies, then interacting with them, collecting the data saved by the server
on the client’s side, and finally parsing the data. However, as the development pro-
gressed, it became apparent that the system is too complex to run as one complete,
monolithic process. Developing CCT in such a way would require exceptional, per-
fect error handling - otherwise, one runtime exception would discard all previous code
execution and collected data.

Thus, the system was split into core functionalities, allowing to break the CCT’s exe-
cution into several rounds. After each one, data collected by the CCT is written to the
disk, so that it can be used by the subsequent round. Thus, CCT works in an incre-
mental manner, increasing the robustness of the system. Moreover, it has been deemed
necessary to make the data human-readable, so that the intermediate results can be an-
alyzed by an experienced human. JavaScript Object Notation, or JSON, has been used
as the format of the data read from and written to the disk.

3.2.5 Round 1: Locating Cookie Privacy Warnings

The purpose of this stage was to locate Cookie Privacy Warnings on each domain that
contains one. Locating an element means finding a CSS selector uniquely identifying
it within the DOM. CSS selector is a pattern that selects elements within DOM one
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wants to style. Here’s an example of a CSS selector identifying a privacy warning on
facebook.com:

#yDmH0d > c−wiz > div.T 4LgNb.ee jsDc > div > div > div

As mentioned in Section 3.1.3, although both high precision and high recall are pre-
ferred, high recall is prioritized in locating Cookie Privacy Warnings. Ideally, CCT
would find all cookie warnings existing in the set of visited domains without the need
for human supervision. However, bearing in mind that such dialogues are implemented
in different ways across the web, creating a fully automated tool capable of collecting
data with adequate recall seemed to be infeasible for this research. Thus it has been
decided to create a scraping tool automatically collecting data, which would later be re-
viewed and refined by a human actor. Excluding the possibilities of creating and train-
ing a machine learning model, this human-computer cooperation has been deemed an
optimal solution of extracting cookie warnings with adequate recall and limited human
involvement.

The initial idea of collecting cookie warnings envisioned a heuristic approach - search-
ing the DOM for HTML elements containing phrases and wordings often occurring
in cookie dialogues. To do that, one could use the findings presented by Molnar [19],
who analyzes privacy warnings’ inner text to find the most important unigrams and
bigrams. However, this study analyzes the phrases that are already within cookie di-
alogues, hence it does not guarantee that n-grams which it reports as important are
unique (within the entire DOM) to a cookie banner. Since phrases such as ”policy,
”cookies” or ”privacy”, can be located outside privacy warnings, using such a simple
heuristic methodology would result in inaccurate measurements. Such an approach
makes it also difficult to determine whether it is the extracted element, or one of its
ancestors, that corresponds to the entire banner, not just its sub-part.

Cookie Privacy Warnings can be located, with both higher recall and precision, using
a predefined CSS selectors list. Such lists are used to remove unwanted content, in-
cluding annoying advertisements or (for privacy negligent users) bothersome cookie
warnings. EasyList Cookie List is one of such lists, containing a set of rules block-
ing cookies banners, GDPR overlay windows, and other privacy-related notices [20].
EasyList Cookie List has been tested with popular ad-blocking tools such as AdBlock,
Adblock Plus, and uBlock Origin, hence making it a credible filter list. As it has been
created with the vision to be used with these ad-blocking tools, this list contains an
extensive set of CSS Selectors. Being a community project, it is constantly updated,
making it a good starting point for locating Cookie Privacy Warnings.

Parsing CSS Selectors List

EasyList Cookie List is vast and contains, in addition to CSS Selectors pointing to
cookie banners, scripts to prevent JavaScript from loading cookie notices or to block
certain requests. This additional content has been included to adapt the list to ad block-
ing tools. As it is unnecessary for this study, EasyList has to be first parsed to obtain
two filtering rules we are interested in:

1. General Element Hiding Rules - if an element with this CSS Selector is found
on any website, it is likely a cookie banner. Put in a set.
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2. Specific Element Hiding Rules - if an element is found on a domain to which
this rule corresponds, it is a cookie banner. Put in a hash map with domains as
keys and selectors as values.

Locating and Double Checking Cookie Privacy Warnings

To detect the cookie banners, CCT iterates over the Tranco list of the top 1000 websites.
For each website, we make a lookup in the hash map to see if a domain-specific selector
exists for that domain. If it does, we make a call to Selenium WebDriver API and
screenshot the corresponding DOM element. If not, we iterate over the set of general
selectors to see if any of them matches any element of the current website’s DOM and
take a screenshot if it does. Websites with no cookie warning detected, or websites that
failed to load, are put in a set, stored as JSON on the disk so that a human actor could
manually ensure that these domains have no cookie banners.

At this point, CCT has made a full iteration over the top Tranco websites and extracted
those websites which contain a Cookie Privacy Warning matched by a CSS selector
from the list. Although CCT prioritizes recall over precision, high precision is still
desired for system efficiency. Moreover, precision is important from the view of re-
porting statistical data, e.g. how prevalent cookie warnings are. For these reasons,
CCT includes a support tool which at this point iterates over the set of websites for
which a cookie banner has been potentially identified. For each website, the support
tool displays the element which has been screenshot using its Graphical User Inter-
face. A human moderator can then either click on the screenshot or signal that the
screenshot is invalid. Clicking on a screenshot saves the corresponding CSS selector
as the correct identifier of Cookie Privacy Warning on that website while clicking on
the ”NOT A COOKIE PRIVACY WARNING” button adds the website to the list of
domains with potentially no cookie dialogue.

Figure 3.2: GUI of Cookie Privacy Warning Checker

The described support tools make sure that the elements we have retrieved so far are in
fact Cookie Privacy Warnings, leaving us with a set of websites for which potentially
no warning exists. This list contains websites which:

(a) failed to load

(b) had no DOM element matching any specific or general CSS selectors
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(c) had an element matching a CSS selector, but the element turned out not to be a
Cookie Privacy Warning

(d) had a Privacy Warning, but the corresponding HTML element was within an
iframe

The last possibility is due to the nature of HTML iframe tag. An iframe, or inline
frame, represents a nested browsing context, embedding another HTML document
within the current one. As a separate browsing context, iframe tags have their own
DOM. Thus, elements within an iframe cannot be accessed by the DOM of the top-
most browsing context 2. This characteristic means that if a website had a Privacy
Warning embedded inside an inline frame, Selenium WebDriver would not be able to
locate it, even with a correct CSS selector.

Consequently, to ensure maximum recall, human interaction was needed. Otherwise,
we would have to come up with a machine learning model capable of detecting HTML
elements representing a Cookie Privacy Warning without human supervision, which
can be considered as a possible improvement of CCT. Accordingly, another support
tool has been created. This tool iterated over the list of websites for which no privacy
warning has been identified so far, loading these domains using Selenium. A human
moderator would then verify that no banner exists on that domain or use Chrome De-
veloper Tools to extract a CSS selector uniquely identifying the Cookie Privacy Warn-
ing within the DOM.

To account for Privacy Warnings within inline frames, the moderator was also asked
whether the element was inside such an HTML tag. With a CSS selector of the warn-
ing, this supplementary information regarding inline frames allowed switching to the
browsing context of specific iframe and interacting with the cookie dialogue.

This simple support tool allowed for fast correction of the initial Cookie Privacy Warn-
ings search, as there was no need for the human to manually copy-paste the domain
address. Manual correction also allowed for achieving both maximum recall and pre-
cision. Figure 3.3 presents the refinement of Cookie Privacy Warning search on one of
the websites using the aforementioned support tool.

3.2.6 Round 2: Locating Clickable Elements

At the end of the first phase, a mapping from domains to CSS selectors identifying
Cookie Privacy Warnings was written to the disk. This file was the starting point for
the subsequent step of CCT aiming at locating clickable elements, within the Cookie
Privacy Warnings, responsible for interacting with the banner and accepting cookies in
accordance with two policies: opt-in or opt-out.

Opt In: given a choice, the user agrees to the server setting all non-mandatory cookies.

Opt Out: given a choice, the user disagrees with the server setting any non-mandatory
cookies, or leaves the website if no option to disagree is initially presented.

2From the user perspective, the top most browsing context is the window.
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Figure 3.3: Manual correction of Cookie Privacy Warning search

To identify clickable elements on particular domain, CCT would look for any descen-
dant tags of the HTML element of a Cookie Privacy Warning, falling into one of these
categories:

• button tag <button>

• tag given a button role by including attribute role="button"

• anchor tag <a>

• input tag submitting a form to the server <input type="submit">

Selenium WebDriver API allows for extracting DOM elements in multiple ways, in-
cluding XPath which uses path expressions to select nodes within an XML, or in the
case of DOM, HTML document. XPath proved to be an ideal tool for extracting de-
scendant tags because of XPath Axes. An axis represents a relationship to the current
node and is used to identify nodes within some context. One of XPath Axes is called
”descendant” and selects all descendant tags of the current node. XPath expressions
for selecting clickable elements within privacy warnings are presented below:

Element XPath
<button> descendant::button
role="button" descendant::*[@role=’button’]
<a> descendant::a
<input type="submit"> descendant::input[@type=’submit’]

Table 3.1: XPath expressions identifying clickable elements within Privacy Warnings

Once the clickable elements have been located within privacy warnings, CCT had to
find the ones responsible for opting in and opting out. To do this, CCT utilizes a heuris-
tic approach basing on the findings of Molnar [19]. In this paper, a comprehensive
study of phrases used not only within cookie banners but also specifically in clickable
elements responsible for opting in and out has been presented. CCT uses these phrases
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to heuristically determine the function of a given clickable. CCT maintains dictionar-
ies (in form of sets) of phrases commonly used in clickable items of cookie warnings,
sorted by the functionality they describe. There is one dictionary with phrases for opt-
ing in, one for opting out, and one indicating a custom cookie selection. Using these
data, a heuristic algorithm checks if a phrase from a dictionary is within the inner text
of a clickable element, thus classifying it as opt-in, opt-out, or custom.

To improve this heuristic approach, some modifications have been made further on
in CCT’s development. To account for domains with non-English content, whenever
comparing the text of clickable elements to the phrases in the dictionaries, that text
was first translated to English using Google Translate API. That text has been also
normalized by making all letters lowercase. Hence a clickable element with the text
”estar de acuerdo” simply becomes ”agree” and is therefore matched by CCT to opt-in
policy.

At this point an important clarification has to be made: most of the domains do not
enable the user to reject all non-mandatory cookies by providing a single ”reject all”
button. Instead, as presented in Figure 3.4, an option to manage cookie preferences is
usually provided.

Figure 3.4: Exemplary Manual Management of Cookie Preferences

This makes it incredibly difficult for CCT to interact with a cookie warning in a way
consistent with a particular cookie policy. One of the reasons is the banners’ front-
end. The example above uses a slider to select cookie preferences. Other websites
might use a form or any other input method. Moreover, an automated tool aiming
at successfully selecting cookie preferences would require a way of understanding the
semantics of the text within the form it is interacting with so that it knows what it agrees
or disagrees with. To limit the system complexity, CCT uses a simplified approach.
When presented with no option to immediately reject all non-mandatory cookies, the
opt-out policy states that CCT simply leaves the website, thus imitating a user too lazy
to read and select cookie settings. This ”lazy” user behavior, however, is not far from
the truth and can be seen as the correct browsing pattern exhibited by a standard user.
According to Hu et al. [21], users do not generally make use of the privacy-increasing
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choices offered by GDPR-compliant Cookie Privacy Warnings.

3.2.7 Round 3: Collecting Data on the Tracking Environment

CCT’s final phase aims at collecting the data exposing the structure of the online track-
ing ecosystem and how a cookie policy can change it.

Data Collected by CCT

CCT’s paramount goal is to conduct a study on the online tracking ecosystem and how
it is impacted by the user’s cookie policy. For collecting the data, Selenium WebDriver
was used to crawl the domains while controlling the browser’s interaction with Cookie
Privacy Warnings, thus affecting the cookies set on the client’s side. While crawling the
websites, CCT saved all potentially tracking, id-like cookies, and all HTTP requests
made by the user agent when visiting each website. Each crawl visited only the main
(starting) page of each domain. CCT was deployed on a personal computer connected
by a VPN to the University of Edinburgh network. Response time for each domain
was set to 60 seconds. The collected data was saved in JSON format for subsequent
utilization in network graph creation.

For the purpose of this study, CCT defines two important entities:

• Publishers - the domains explicitly visited by a user, a.k.a. first-parties

• Trackers - third-parties embedded within publishers and responsible for setting
potential tracking cookies in the browser

To collect the desired information, CCT performs six crawls of the Tranco top one
thousand websites. The first two crawls are aimed at identifying trackers embedded
within publishers’ domains - one crawl for opt-in policy, another one for opt-out. These
crawls logged id-like cookies set by third-party domains. CCT extracted the cookies
from the browser only after interacting, if possible, with the Cookie Privacy Warning
using the clickable elements from Round 2. Before visiting each domain, using Sele-
nium WebDriver API, the browser was cleaned of any cookies or cache, hence making
the visits to new domains independent from the preceding ones 3.

The remaining four crawls aimed at identifying pairs of trackers performing cookie
synchronization. Collecting data for each policy required two crawls - one for visiting
the domains, allowing the cookies to be set on the browser, and another one for captur-
ing HTTP traffic made by the browser 4. Thus visits to the domains were not isolated
like in the first two crawls. The reason for that was simple - cookie synchronization
will not happen unless the cookies are set on the client’s side. By making a separate
crawl to first populate the browser with cookies, CCT exploits cookies’ cross-website
tracking capabilities and allows id-sharing to all trackers that want to do so. Hence the
amount of cookie synchronization observed is maximized.

3This action was necessary, as the cookies saved while visiting previous domains would interfere
with new measurements. The identification of third-parties embedded in a domain must be done only
by using the cookies set on visiting that particular domain.

4With two cookie policies, opt-in and opt-out, and two crawls per policy, 4 crawls were needed in
total.
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Filtering Non-tracing Cookies

CCT’s must be able to filter out these cookies which non-tracking cookies. There are
many ways in which a cookie can trace a user, for example, several cookies with little
information can be combined to track a user. Theoretically, a user could be traced even
by a cookie name. This study, however, takes a conservative approach to avoid tracing
overestimation and takes into account only the cookies’ value fields.

To determine if a cookie is an identifier or not, some previous studies, such as one
by Sanchez-Rola et al. [22], take an information-theoretical approach of measuring
cookies’ entropy. [22] takes inspiration from studies focusing on measuring password
strength, defined as the amount of information it carries, by calculating the number of
guesses it would take an adversary to guess it. To quantify the strength, zxcvbn [23]
score is used - large zxcvbn values indicate difficult to guess strings.

Using the above score as a sole indicator of a tracking cookie might be partially un-
justified. According to Englehardt et al. [24], a tracking cookie must be long-lived, so
that it can identify a user over a long period. A short-lived cookie indicates a functional
cookie, unattractive from the privacy perspective. CCT partially adopts the approach
taken in [24] and analyses both expires and value fields of the cookie.

First, CCT parses the string within the cookie’s value field, which is often composed
of multiple name=value pairs, as shown on the example below:

name1=value1$name2=value2$...$name3=value3

$ is a delimiter character matching a regular expression [ˆa-zA-Z0-9 =-]. After
parsing cookie data into separate pairs, the cookie was classified as tracing if any of
these sub-values had a length larger than 7 characters and zxcvbn score ≥ 109, which
are the same threshold values used by [22]. Moreover, just like [24], we require a
tracing cookie to have an expiration date of at least 3 months away from its creation.

Detecting Cookie Synchronization

In the past, different studies have taken multiple approaches to detect cookie synchro-
nization. Initially, only heuristic-based mechanisms were used, in which cookie syn-
chronization is discovered whenever an id-like cookie delivered by one domain is sent
in an HTTP request to a different one. Such approach has been taken by numerous
studies, such as [2], [25] or [12].

As reported by Bashir et al. [26], companies such as DoubleClick have recently begun
encrypting or their cookies before sharing them to other ad networks, to prevent any
potential adversary from learning the cookie by packet sniffing. For this reason, stud-
ies such as [27] have started using machine learning, stateless cookie synchronization
detection mechanisms. Such an approach envisions using only characteristics of an
HTTP connection to detect synchronization and hence does not rely on any previously
stored cookies.

Unlike [27], CCT uses a purely heuristic approach. As cookie synchronization is just a
request to a third-party, carrying at least one tracking cookie set by a referring website,
heuristic detection requires analyzing both HTTP traffic made by the user agent and
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the cookies set on the browser. Sometimes, id sharing detection can be straightforward,
as we could simply search for parameters named suggestively (e.g., ”uuid”, ”user id”).
However, generalizing this approach would not be reliable, as different domains use
potentially unstandardized parameter naming, possibly resulting in increasing the num-
ber of false negatives. The following paragraph discusses the algorithm designed for
detecting cookie synchronization.

First, non id-like cookies set on the browser are filtered out, leaving us with only
potentially tracing ones, which are put in a hash map with cookie value as key and
domain (which set the cookie) as value. Then a dataset of HTTP requests is parsed to
detect id-like strings contained in:

• GET parameters within the URL

• URL path

• Cookie header

• Request body

Each detected id-like string is then looked up within the aforementioned hash map.
If there is a map entry with the same cookie value and the domains are different (re-
ceiver of the cookie is different from the domain setting it), cookie synchronization is
detected.

Simple string matching, however, cannot be utilized to check whether two domains are
the same or not. Such an approach would not account for cases of different subdomains
owned by the same company (e.g., store.steampowered.com and steampowered.com).
Hence, CCT uses DNS whois protocol to obtain information about the domain provider
and discriminate between intentional cookie synchronization and legitimate internal
information sharing.

3.3 Cookie Crumble Tracer Evaluation

3.3.1 System Stability

As reasoned in Section 3.2.4, CCT has been implemented in such a way so that it
performs regular saves to the disk. In case of a crash, it can be rerun from a checkpoint.
In the process of gathering required data, CCT has executed each of the described
rounds at least once on the set of 1000 most popular domains from the Tranco list. CCT
has failed only twice, once during the execution of Round 1 and once during Round 2,
due to unstable WiFi connection which caused almost all domains to timeout. Even in
these cases CCT has not technically crashed, but simply delivered meaningless, mostly
empty results. After switching to a more reliable Ethernet connection, CCT managed
to repeat these rounds without any errors. Taking into account all domain visits made
by CCT in all three rounds, with only two failures, restarting CCT was necessary on
average once every 4000 domain visits.
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3.3.2 Loading Web Pages

Across all three rounds, CCT fully analyzed 88.1% (881 out of 1000) Tranco web-
sites, meaning that 11.9% of all websites have failed to load. Round 3, which aimed at
collecting data, was responsible for most of the domains not loading properly - 7.9%
(79) websites failed to load while analyzing network traffic. This could have been
caused by selenium using a proxy server to analyze the traffic, slowing down the net-
work throughput and hence increasing the number of pages that timed out. A possible
improvement could be simply increasing the time tolerance of the system. Another
2.7% (27) of all domains failed to load during the first round, when cookie warnings
were being collected, with another 13% of all domains failing to load during locating
clickable elements in the second round.

Timeout errors were most frequent in the third phase of CCT’s operation. Another
reason behind the domains failing to load was unresponsive servers. Some entries
in the Tranco list are not supposed to be visited by human actors. For example,
http://tiktokcdn.com is used to deliver media content to geographically close clients.
However, given the complex nature of performed crawls and the wide spectrum of
servers that top entries of the Tranco lists refer to, the overall performance of CCT is
more than satisfying.

3.3.3 Identifying Privacy Warnings and Clickable Elements

As described in Section 3.1.3, CCT prioritises recall and low false-negative rate. As
outlined in the sections documenting CCT’s implementation, this has been achieved by
combining resources used by popular ad-blocking tools and human supervision. To as-
sess whether those requirements have been met, 100 domains have been sampled from
the Tranco list’s top 1000 entries. Out of these 100 websites, 53 contained a Cookie
Privacy Warning. In the first phase of Round 1, by utilizing the EasyList CSS selec-
tors list, CCT identified 24 (45%) of these cookie dialogues. By using GUI of CCT to
verify these banners we have confirmed that 100% of these initially retrieved HTML
elements are privacy warnings. The remaining 29 privacy warnings were located man-
ually by a human moderator, thus achieving both 100% recall and 100% precision on
the given domain sample. The process of collecting data by CCT and verifying it (us-
ing support tools provided by the platform) by a human actor allows for achieving such
results every single time.

Out of these 53 privacy warnings, 9 were simply notifications of cookie use. Another
27 were banners that had only the option to opt in. 13 banners provided both an option
to opt in and another option to customize cookie settings. Finally, there were only 4
domains that provided both an option to opt in, and an option to opt out and reject all
non-mandatory cookies. Using the heuristic approach of detecting clickable elements
within Cookie Privacy Warnings outlined in Section 3.2.6, CCT has correctly classi-
fied 95% (42) of clickable items corresponding to opting in and 100% of elements
corresponding to opting out, achieving an aggregated recall of 96%.



Chapter 4

Results and Data Analysis

4.1 General Cookie Characteristics

This section investigates the general characteristics of cookies set in the browser and
how the nature of these cookies is affected by the user’s cookie policy. In addition
to presenting cookie data for opt-in and opt-out policies, we also show the character-
istics of cookies set on the client’s side before any interaction with a Cookie Privacy
Warning.

Policy Cookie Mean Std Dev Median Mode 1st Quartile 3rd Quartile Max

No interaction

All 16.8 19.0 11.0 3.0 11.0 10.0 160.0
First party 9.2 9.3 6.0 0.0 6.0 6.0 73.0
Third party 7.6 13.1 3.0 0.0 3.0 3.0 128.0
ID like 7.6 10.5 4.0 1.0 4.0 4.0 88.0

Opt In

All 17.6 20.7 11.0 4.0 12.0 10.5 238.0
First party 10.0 9.8 7.0 0.0 7.0 6.0 57.0
Third party 7.6 15.0 2.0 0.0 3.0 2.0 217.0
ID like 8.0 11.1 4.0 2.0 4.0 4.0 111.0

Opt Out

All 16.8 19.1 11.0 3.0 11.0 10.0 160.0
First party 9.3 9.4 6.0 0.0 6.0 6.0 73.0
Third party 7.5 13.2 3.0 0.0 3.0 3.0 128.0
ID like 7.6 10.6 4.0 1.0 4.0 4.0 88.0

Table 4.1: General Cookie Data

A detailed summary describing the gathered cookies can be found in Table 4.1. What
has to be stressed is the fact that in this table, an ID-like cookie does not have to be
set by a third-party. However, this is an exception in this study. Generally speaking, in
this work the term ”ID-like cookie” is used in the context of third-party cookies.

As one would expect, the largest means for all categories can be observed for opt-in
cookie policy. With this policy, visiting each website saved on average 17.6 new cook-
ies in the client’s browser. This number includes both first and third-party cookies,
which can be used for session management, tracing, or personalization. Further refine-
ment of the opt-in policy results shows that on average 10 first-party cookies and 7.6
third-party cookies were saved on each domain, with 8 cookies identified as potentially
tracing.

An interesting statistic that has been extracted by the CCT and presented in Table 4.1
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is the maximum number of cookies set on visiting a domain. The largest number of
cookies set by a domain is 238 for opt-in policy, 78 more than both the number of
cookies set before any interaction and the number of cookies set for the opt-out policy
(160). When only third-party cookies are considered, the differences between the max-
imums are even larger - 217 for opt-in compared to 128 for opt-out and no-interaction.
These numerical differences decrease when only ID-like, potentially tracing cookies
are considered. The maximum number of such cookies is 111 for opt-in policy, 23
more than for the other two criteria (88 for both).

Figure 4.1: Number of unique domains setting particular types of cookies, grouped by
the policy of interaction with Cookie Privacy Warning. Percentages represent fractions
from all 881 loaded domains. Visiting one domain can result in setting multiple types
of cookies. Therefore the number of first-party and third-party cookies are not comple-
mentary and do not add up to the ”Any Cookies” number.

Looking at the data presented in Figure 4.1 and Table 4.1, one can note that the ex-
tracted statistics are generally quite similar. To depict the distribution of the data to-
gether with some of the statistics from Table 4.1 violin plots were used. Violin plots
show summary statistics similarly to box plots, at the same time combining it with
kernel density estimation plots. Instead of showing counts of data points falling within
order statistics, like in the case of box plots, violin plots utilize Gaussian Kernel Den-
sity Estimation to compute an empirical distribution of the sample [28]. Figure 4.2
presents labeled violin plots for cookie data collected by CCT on these websites which
contain a GDPR privacy warning. The reason for excluding the websites which do not
have such a warning is simple. Cookie Privacy Warnings have been located on around
50% (497) of all websites. This in turns means that 503 domains behave in the same
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way irrespective of the cookie policy of the crawl. Including these websites would
most likely homogenize the datasets and make the plots very similar to each other. For
this reason, Figure 4.2 considers the data from GDPR compliant domains only.

Figure 4.2: Distribution of cookies of specific types over the crawled websites according
to the policy of interaction with Cookie Privacy Warning. The distribution is accompa-
nied by horizontal lines specifying the maximum, minimum, and mean.

.

The graphs further confirm what could already be deduced from Table 4.1 - datasets
collected for each policy criterion are similar. For this reason, another form of analysis
is required. In the next section, the tracing ecosystem will be modeled and analyzed as
network graphs.

4.2 Creating Network Graphs

By quantifying the behavior of first and third-party cookies, analysis of numerical re-
sults performed in the previous section summarizes the state of the tracking ecosystem
that users can develop around themselves. However, it does not investigate the struc-
ture of that network, which could shed light on the importance of specific domains
within it. By analyzing the inner structure of the tracking environment, one could
also answer questions regarding, for example, communities formed by publishers and
trackers 1. Thus, an important part of this study is transforming the data collected by
the CCT into network graphs representing the tracking ecosystem. Graph mining tools
and metrics are then used to study the properties of these graphs. By doing so, we can
dissect the environment of publishers and trackers and observe how mechanisms, such
as cookie synchronization, affect the network.

In creating the graphs, this study takes an approach similar to the one by [3], [7] [12]:
two network graphs, ”Publishers-Trackers” and ”Trackers-Trackers”, are created. The

1Please refer to Section 3.2.7 for the definitions of terms ”publisher” and ”tracker”



Chapter 4. Results and Data Analysis 26

following paragraphs describe how the data is transformed into graphs and present the
results of their analysis.

Publishers-Trackers (PT) Network Graphs

This graph represents the connection between third parties (trackers) and their hosts
(publishers). It is a bipartite, or 2-mode graph, meaning that its vertices can be divided
into two disjoint and independent sets, VP (publishers) and VT (trackers), such that
every edge connects vertices of different modes. In this undirected graph, a publisher
node can connect to multiple tracker nodes and vice versa.

PT graph is constructed by creating two sets of mappings, VP and VT . VP represents the
set of domains from the Tranco list that CCT visits during the crawl - the publishers.
VT is the set of third parties embedded within the domains included in VP - the trackers,
which set an ID-like cookie in the user’s browser. Furthermore, we also introduce EPT
- a set of weighted edges connecting nodes of different modes, with weights equal to
the number of ID-like cookies set by a tracker hosted by that publisher. Thus, the PT
graph can be concisely represented as PT = (VP,VT ,EPT ).

To apply graph metrics, network graphs have to be connected in the sense of topo-
logical space - there has to be a path between any two nodes of the graph. For this
reason, after parsing the collected data into the Publishers-Trackers graph, their largest
connected components have been extracted for further analysis. According to an ob-
servation made by Solomos et al. [3] the majority of distinct trackers and publishers
can be found in the largest connected component of the PT graph. Their study reports
that 99% of all publishers and 95% of all trackers can be found in the LCC. However,
that study collects data by crawling Alexa top 100 000 websites - significantly more
than CCT does in this study. Thus, we would expect the graphs created as part of this
study not to achieve that high level of connectivity.

This, indeed, has turned out to be the case, but the differences were not as large as ex-
pected. LCC of Publishers-Trackers graph for opt-out policy contains 86.9% (766) of
all distinct publishers and 84.3% (404) of all trackers. For opt-in policy, these numbers
are 84.7% (746) and 85.1% (660) respectively. What is perhaps even more important,
is the fraction of edges of the original PT graphs contained in their largest connected
components. These percentages are significantly higher than fractions of publishers
and trackers, with 97.1% (3232) and 96.9% (3956) for opt-out and opt-in policies
respectively. This observation proves that basing our analysis solely on the largest
connected components is justified because it contains almost all of the network’s con-
nections and nodes.

The preliminary analysis of PT graphs shows the effect a cookie policy has on the
network’s size - opting out decreased the number of trackers in the network by 38%,
or 39% if only networks’ largest components are considered. It also shows another
characteristic of the tracking ecosystem - excluding the largest connected component,
Publishers-Trackers network graph contains only small, isolated groups of nodes, that
include very few publishers hosting very few trackers. This observation is in line with
results presented by Solomos et al. [3] who reported identical observations, thus giving
credibility to data collected by the CCT.
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Figure 4.3: The relation between cumulative number of visited publishers, and identified
trackers hosted by them, normalized and expressed as percentages

.

In total, while crawling the 1000 most popular domains according to Tranco, CCT has
detected 776 distinct trackers when opting in and 479 when opting out. In Section
3.2.2 a hypothesis has been made - we argued that the cumulative number of trackers
will not be proportional to the number of publishers a user visits. In practice, it would
mean that a minority of publishers will host the majority of identified trackers. By an-
alyzing the vertices of the Publishers-Trackers graph, a plot showing the percentage of
observed trackers in relation to the percentage of visited publishers has been created.
The horizontal axis represents the fraction of publishers CCT has visited, while the
vertical axis presents the percentage of all distinct trackers identified over that frac-
tion. As presented in Figure 5.3, 50% of all trackers are hosted by around 32% of
publishers for opt-in policy and 25% for opt-out policy, hence confirming our previous
speculation.

Trackers-Trackers (TT) Network Graphs

Unlike PT graphs, Trackers-Trackers Graphs are single modal - they only contain
nodes classified as trackers. In a nutshell, TT Graph can be represented as T T =
(VT ,ET T ). VT is a set of trackers embedded in the publishers, and ET T is a set of undi-
rected, weighted edges connecting the trackers. The weight of an edge is the number
of times cookie synchronization has been observed between two particular trackers.

Just like in the case of PT graphs we extract the largest connected component from the
TT graphs for further network analysis. TT graphs have a fairly dense structure and
are better inter-connected than PT graphs. LCC of Trackers-Trackers network graph
contains 98.4% (1195) of all trackers for opt-in and 96.3% (968) for opt-out policy. The
fractions of all edges within the LCC are 99.7% (4049) and 99.3% (2618) respectively.
One can see the difference a cookie policy makes by looking at the number of vertices
and edges within the networks. Opting out decreases the number of trackers in the
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graph by 17% (19% if only LCCs are considered). Moreover, opting out results in
almost 35% less pairs of trackers sharing data than opting in (2618 vs. 4049). Similar
to PT graphs, analysis of remaining connected components showed that each of them
contains a single-digit number of non-popular trackers.

The difference in the connectivity of PT and TT graphs sheds light on how collabora-
tive the embedded trackers are, and is somewhat expected. Exchanging user-identifying
data allows the trackers to perform server-to-server user data merges, which as shown
by Englehardt and Narayanan, takes place at a massive scale [14]. According to [29]
and [30], web companies frequently enter mutual agreements for either data exchanges
or purchases, so they could improve the quality and increase the number of their user
datasets. This, in turn, can be observed by an increased amount of cookie synchroniza-
tion and, consequently, by a more meshed structure of TT graphs.

While analyzing the Tranco top 1000 domains, CCT has observed 27070 cases of
id-sharing when opting in and 16429 cases when opting out, clearly showing the in-
fluence of cookie policy on the amount of cookie synchronization. 2. Similarly to the
PT graphs, we expect the relationship between the amount of cookie synchronization
observed, and the number of identified collaborating pairs of trackers, to be non-linear,
i.e. most of the observed data exchange will be performed by a minority of trackers.
To verify this hypothesis, TT graphs’ largest connected component has been analyzed
to obtain a plot showing the cumulative number of all cookie synchronizations. The
horizontal axis of Figure 4.4 presents a fraction of all identified pair of collaborating
trackers, while the vertical axis presents the normalized cumulative number of cookie
synchronizations (expressed as a percentage) over that fraction.

Figure 4.4: The relation between cumulative number of observed pairs of collaborating
trackers, and cookie synchronizations performed by them, normalized and expressed
as percentages

.
2Interestingly, the same reduction of 40% has been previously reported by [12]
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As seen in Figure 4.4, the disproportion is even larger for the PT graphs. For opt-in
policy, just 11% of all collaborating tracker pairs are responsible for 50% of all data
exchange. For opt-out policy, the number is similar, around 12%. This preliminary
analysis of the TT graph’s largest connected components already shows that some
vertices are significantly better connected than others. The following sections utilize
graph mining tools and metrics to further study the properties of TT and PT graphs and
shed light on the importance of individual vertices within the tracking ecosystem.

4.3 Analysing Publishers-Trackers Graphs

We use graph metrics similar to those utilized by [7], [12]) and [8]. To analyze the in-
ner structure of a Publishers-Trackers graph, we use notions of density, diameter, and
radius, as well as global clustering coefficient. To reveal the importance of individual
nodes within the network, we compute Degree, Betweenness, and Closeness centrali-
ties. Finally, we check how these centrality measures correlate with each other using
Pearson Correlation Coefficient.

Policy Density Diameter Radius Average Clustering Coefficient
Opt In 0.0048 12 6 0.1755

Opt Out 0.0077 11 6 0.2046

Table 4.2: PT graph inner structure’s characteristics

Table 4.2 presents how the inner structure of the Publishers-Trackers graph is influ-
enced by the cookie policy. In general, we can observe that these metrics are similar
for both of them. Both graphs are sparse, which is indicated by the density and av-
erage clustering coefficient. The average clustering coefficient measures the degree
to which a graph’s nodes tend to cluster together. The low values for both Publisher-
Tracker Graphs are a result of its two-modal nature - clustering is limited since edges
are present only between vertices of different modes. In conjunction with low density,
average clustering coefficients for both graphs indicate their sparsity.

4.3.1 Centrality Metrics

This section computes various centrality metrics to identify the most important vertices
within the Publisher-Trackers network. Figure 4.5 plots the cumulative distribution for
each metric, computed based on the LCC of Publishers-Trackers graph. 3

4.3.1.1 Degree Centrality

Degree centrality is defined as the number of ties a node has, or in other words, how
many edges are incident upon that node. The first plot in each row of Figure 4.5
presents the cumulative density of normalized degree centrality for both cookie poli-
cies. As one could see, in the distribution’s upper tail the scores for publishers are an

3The presented metrics are normalized, meaning they are divided by the maximum possible value of
that metric for given graph.
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Figure 4.5: Cumulative distribution for each centrality metrics, normalized, as computed
for both cookie policies. Top row shows metrics for the Publishers, bottom for Trackers

.

order of magnitude lower than for trackers, suggesting that the most important pub-
lishers are far less important than the most important trackers. 50% of publishers have
a score≤ 0.00234 and 0.00328 for opt-in and opt-out policies respectively. Fraction of
publisher vertices with a score ≥ 0.01 is 12% (opt-in) and 18% (opt-out), with only
1% of all publishers having a score ≥ 0.035/0.048.

Although the scores of trackers node at the upper end of the distribution are signifi-
cantly larger than for the publishers, most of the trackers are at the lower end of the
distribution. 90th percentile for tracker nodes is around 0.00858 - for publishers, it is
0.01171. 50% of all trackers have a score ≤ 0.0007 and 0.001 for opt-in and opt-out
policies respectively. Top 1% of trackers have a degree centrality ≥ 0.07/0.11 (opt-
in/opt-out), twice the score for publisher’s top 1%. The relatively high score for opt-
out policy hints at the existence of third-parties with large tracing capabilities, even if
a user opts out. What is also interesting is the polarization in trackers degree centrality
graph - most of them have a very low score, but there are some for which the score is
very large, larger than for any tracker and any publisher. This is due to the presence of
domains specialized for user tracking, such as doubleclick.net or facebook.com,
which are often employed by host domains specifically to track their visitors.

As one can see, top positions are occupied by well-known domains, all of which are
trackers, showing how important third-parties are in connecting the vertices of the
network. Opting out slightly reshuffles the top ten positions, but does not affect the
included domains.

4.3.1.2 Betweeness Centrality

For every pair of nodes in a connected graph, there is at least one shortest path between
these vertices. The betweenness centrality of a vertex is the number of such shortest
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Rank
Opt In Opt Out

Domain Type Value Domain Type Value
1 doubleclick.net Tracker 0.16862 doubleclick.net Tracker 0.20765
2 facebook.com Tracker 0.15144 facebook.com Tracker 0.19454
3 scorecardresearch.com Tracker 0.10070 scorecardresearch.com Tracker 0.12678
4 adnxs.com Tracker 0.09836 adnxs.com Tracker 0.12131
5 bing.com Tracker 0.09602 google.com Tracker 0.11803
6 google.com Tracker 0.09446 demdex.net Tracker 0.10710
7 demdex.net Tracker 0.09133 bing.com Tracker 0.10273
8 everesttech.net Tracker 0.07026 everesttech.net Tracker 0.08743
9 dpm.demdex.net Tracker 0.06792 linkedin.com Tracker 0.08743
10 linkedin.com Tracker 0.06714 dpm.demdex.net Tracker 0.08415

Table 4.3: Top nodes of Publishers-Trackers graph according to their degree centrality.

paths passing through a particular node [31] and measures the influence of a vertex
over the flow of information in a network.

Just like in the case of degree centrality, betweenness scores for the trackers are lo-
cated mostly around the lower extreme, meaning that trackers can be roughly split
into two groups. One contains a small number of well-known, connected domains,
central to the graph. The other one consists of the majority of trackers which are nei-
ther well-connected nor central to the network. 90th percentile for tracker nodes is
0.00167/0.00387 (opt-in/opt-out) - for publishers nodes it increases to 0.007/0.00623.
However, the situation changes for the 99th percentile. The top 1% of trackers have a
betweenness score of 0.0538/0.0684, while the top 1% of publishers have a score of
≥ 0.0137/0.0222 (opt-in/opt-out). This means that while most of the publishers have
scores larger than most of the observed trackers, the most important third-parties are
far more central to the tracking environment than all other publishers. This tendency
is presented in Table 4.4.

The distributions for trackers and publishers are almost identical for both cookie poli-
cies, meaning that the cookie policy does not particularly affect the centrality of indi-
vidual nodes within the network.

Rank
Opt In Opt Out

Domain Type Value Domain Type Value
1 doubleclick.net Tracker 0.22756 doubleclick.net Tracker 0.22317
2 facebook.com Tracker 0.18860 facebook.com Tracker 0.19388
3 google.com Tracker 0.15692 google.com Tracker 0.16595
4 scorecardresearch.com Tracker 0.10569 scorecardresearch.com Tracker 0.10473
5 bing.com Tracker 0.08475 bing.com Tracker 0.09380
6 demdex.net Tracker 0.08097 demdex.net Tracker 0.06842
7 adnxs.com Tracker 0.07735 adnxs.com Tracker 0.05694
8 hm.baidu.com Tracker 0.05381 youtube.com Tracker 0.05334
9 linkedin.com Tracker 0.05068 op.gg Publisher 0.04650
10 youtube.com Tracker 0.04009 hm.baidu.com Tracker 0.04265

Table 4.4: Top nodes of Publishers-Trackers graph according to their betweeness cen-
trality

Table 4.4 shows top network vertices for both cookie policies. As one can see, from all
the included nodes only one is a publisher. Since betweenness centrality measures the
extent to which a vertex lies on paths between other nodes, the publisher’s scores are
expected to be lower than those of the trackers. Publishers are not connected to each
other but are connected through trackers instead. Well-known trackers central to the
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network are found at the upper tail of the distribution with scores ≥ 0.02.

Just like in the case of degree centrality, there is little variation in the top 10 rankings
between opting in and opting out. This time, however, the policy (slightly) changes the
entries within the lower end of the lists.

4.3.1.3 Closeness Centrality

The closeness centrality of a vertex is calculated as the inverse of the sum of the short-
est paths’ lengths between that node and all other nodes in the graph. The higher this
metric is for a vertex, the closer to all other nodes in the network it is. Focusing on
the corresponding plots within Figure 4.5, one can see that this distribution is more
uniform than for all other metrics and, unlike for the previous one, the range of scores
for trackers and publishers is almost the same. The difference, however, is in the curve
gradient, which seems to be larger for trackers. This means that most of the track-
ers have a similar closeness score (0.22-0.28), and only some of them are located at
the extremes. The upper tail of the distribution is expected to include well-connected
trackers belonging to popular domains, such as Google or Facebook, or other domains
which specialize in tracing users for financial profit.

Comparing to the two previous metrics, closeness centrality is more affected by the
cookie policy. Opting out increases the closeness of the network vertices, meaning
that the nodes are closer to each other than they are when opting in. One of the factors
which could influence this centrality metric is the number of trackers in the graph,
which is larger for opt-in policy. A larger number of trackers means that in the case of
opt-in policy the shortest path between any two nodes must go through extra tracker
vertices, decreasing their closeness to other nodes.

Rank
Opt In Opt Out

Domain Type Value Domain Type Value
1 doubleclick.net Tracker 0.38584 doubleclick.net Tracker 0.40237
2 facebook.com Tracker 0.36789 facebook.com Tracker 0.38936
3 newyorker.com Publisher 0.36289 inquirer.net Publisher 0.38349
4 inquirer.net Publisher 0.36024 mirror.co.uk Publisher 0.3803
5 mediafire.com Publisher 0.35862 boston.com Publisher 0.37439
6 tribunnews.com Publisher 0.35782 colorado.edu Publisher 0.37439
7 venturebeat.com Publisher 0.35663 merdeka.com Publisher 0.36895
8 vimeo.com Publisher 0.35524 dailymail.co.uk Publisher 0.36777
9 nfl.com Publisher 0.35348 tribunnews.com Publisher 0.36659
10 colorado.edu Publisher 0.35077 venturebeat.com Publisher 0.36542

Table 4.5: Top nodes of Publishers-Trackers graph according to their closeness central-
ity

Unlike in the cases of degree and betweenness centrality, closeness centrality gives
importance to the publishers. Although the two most important domains are still
doubleclick.net and facebook.com, the rest of the entries in the ranking are pub-
lishers. One could say that relatively high closeness centrality is to be expected from
publishers, as by nature the trackers gather around them. A publisher is very likely to
be directly connected with a popular tracker, which then connects it directly to a large
number of domains. An unpopular tracker, however, cannot - for it to be close to other
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nodes, it has to coexists in one host with some other, more popular tracker. This is the
only way such an unpopular tracker can be connected to the rest of the network. As
we have observed in sections devoted to other centralities, trackers are polarized - a
lot of them are significantly less important than just a few well-connected domains like
Google. These trackers will connect to the rest of the tracing environment through their
host, meaning that the importance of publishers, as measured by closeness centrality,
greatly increases.

4.3.2 Correlation of Centrality Metrics

After investigating the inner structure of the bipartite graphs, we focus on evaluat-
ing the relationship between these centrality metrics. By calculating Pearson Correla-
tion Coefficient between the Degree Centrality, Betweenness Centrality, and Closeness
Centrality for trackers and publishers independently, we will understand if the network
vertices tend to have large values in all metrics at the same time, or if there is any
dissociation between them.

Policy
Publishers Trackers

DC-BC DC-CC BC-CC DC-BC DC-CC BC-CC
Opt In 0.75 0.631 0.538 0.887 0.556 0.383
Opt Out 0.705 0.611 0.469 0.882 0.629 0.418

Table 4.6: Pearson Correlation Coefficient between Degree & Betweeness Central-
ity (DC-BC), Degree & Closeness Centrality (DC - CC) and Betweeness & Closeness
Centrality (BC-CC), for PT graphs corresponding to different cookie policies. All results
are statistically significant at p− value≤ 0.05

Overall the coefficients show a strong correlation between all metrics with a high confi-
dence level. Particularly high is the correlation between degree and betweenness Cen-
tralities for tracking domains, showing that no matter the metric used, these nodes are
very important and central to the network. On contrary, publisher nodes have a higher
correlation of betweenness and closeness centrality, as well as degree and closeness
centrality, thus validating the significance of these publishers, who are connected to
many trackers and thus tend to have an important position in the network structure. As
one can see, cookie policy does not have a changing effect on the correlations.

4.4 Analysing Trackers-Trackers Graphs

Unlike Publishers-Trackers graphs, Trackers-Trackers network graphs are not bipartite
- all nodes are classified as trackers. Nevertheless, the following paragraphs analyze
TT graphs in the same manner as PT graphs. We start with simple metrics, presented
in Table 4.7. We then carry on to the analysis of degree, betweenness and closeness
metrics. Finally, we compute Pearson Correlation Coefficients to see how the metrics
correlate.

The values presented in Table 4.7, particularly low average clustering coefficient with
low density, show that TT graphs are also sparse. Opting in makes the networks even
sparser - this is so because opting in adds new trackers to the network, but not enough
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Policy Density Diameter Radius Average Clustering Coefficient
Opt In 0.0057 9 5 0.1488

Opt Out 0.0055 9 5 0.1076

Table 4.7: PT graph inner structure’s characteristics

new connections between vertices to account for the increase in the network’s size.
TT graphs’ diameter and radius are smaller, even though TT graphs have significantly
more edges than the Publishers-Trackers graph. This points to tracker nodes forming
a more interconnected structure, where vertices are generally slightly closer to each
other than nodes of Publishers-Trackers graphs.

4.4.1 Centrality Metrics

Figure 4.6 plots the distributions of normalized degree, betweenness, and closeness
centrality for TT graphs corresponding to opt-in and opt-out policies. Basing on this
plot, a similar analysis to the one for the Publishers-Trackers graph is performed and
presented in the following paragraphs.

Figure 4.6: Cumulative distribution for each centrality metric, normalized, as computed
for both cookie policies

4.4.1.1 Degree Centrality

Unlike in the case of PT graphs, the distributions of degree centralities are almost iden-
tical when opting in and opting out. 95% of trackers have scored lower than 0.018 and
0.011 for opt-in and opt-out policies respectively. Top 1% of trackers has normalized
degree centrality larger than 0.042 when opting in and 0.033 when opting out. Thus,
opting in seems to increase the degree centrality of very few, most important trackers.

When ranking domains according to their degree centrality (Table 4.8), Google’s dom-
inance cannot be underestimated, with 4 out of the top 10 domains belonging to that
company. Although the values change when opting out, the top 4 entries stay the same.
Opting out increases the importance of facebook.com and Amazon’s alexametrics.com.
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Rank
Opt In Opt Out

Domain Value Domain Value
1 google-analytics.com 0.38526 google-analytics.com 0.42503
2 doubleclick.net 0.34925 doubleclick.net 0.35471
3 google.com 0.23116 google.com 0.23475
4 google.pl 0.22781 google.pl 0.22958
5 yandex.ru 0.16164 facebook.com 0.12823
6 facebook.com 0.1206 alexametrics.com 0.05171
7 lijit.com 0.10469 ad.gt 0.0486
8 free.fr 0.0536 omtrdc.net 0.03723
9 adsrvr.org 0.05276 chartbeat.net 0.03619
10 techradar.com 0.05109 ups.com 0.03413

Table 4.8: Top nodes of Trackers-Trackers graph according to their normalized degree
centrality

4.4.1.2 Betweenness Centrality

Figure 4.6 indicates very similar distributions for opting in and opting out. 95% of
nodes have betweenness centrality smaller than 0.00531 when opting in and 0.00776
when opting out. Conversely to the degree centrality, top domains have larger scores
for opt-out policy. The difference is also observed in the maximum values - 0.3141 for
opt-in policy and 0.39373 for opt-out. Both scores belong to google-analytics.com,
showing that even opting out does not pose a threat to Google’s dominance in the
tracing environment. A possible reason for that is the scale of Google’s operation -
while opting out decreases the tracking activity of less powerful domains, Google’s
tracking capabilities are large enough to capitalize on other domains’ limited abilities,
hence explaining its increase in degree centrality scores for opt-out policy.

Rank
Opt In Opt Out

Domain Value Domain Value
1 google-analytics.com 0.31410 google-analytics.com 0.39373
2 doubleclick.net 0.24771 doubleclick.net 0.29365
3 yandex.ru 0.17504 google.com 0.08079
4 lijit.com 0.08808 google.pl 0.07403
5 google.com 0.08226 facebook.com 0.05853
6 google.pl 0.06064 ad.gt 0.04107
7 facebook.com 0.03806 ups.com 0.03751
8 1rx.io 0.03069 goodreads.com 0.03453
9 amazon.com 0.02656 amazon.com 0.03311
10 demdex.net 0.02589 ibm.com 0.03214

Table 4.9: Top nodes of Trackers-Trackers graph according to their normalized degree
centrality

Table 4.9 again confirms that top trackers performing cookie synchronization have
larger betweenness scores when opting out. Opting out seems to increase the impor-
tance of well-known domains, which move up in the ranking for opt-out policy.
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4.4.1.3 Closeness centrlity

The distribution of closeness centrality is perhaps the most interesting one. The opt-out
curve seems to have a temporary plateau around value 0.336, showing that very few
nodes have closeness scores similar to that value. Around 35% of all trackers have a
score in the range 0.259−0.298 for opt-out policy and 0.274−0.321 for opt-in policy.
Around the value of 0.340, both distributions are similar, with around 40% of all nodes
having closeness centrality close to that score.

Rank
Opt In Opt Out

Domain Value Domain Value
1 google-analytics.com 0.56215 google-analytics.com 0.53455
2 doubleclick.net 0.54003 doubleclick.net 0.50948
3 google.com 0.49896 google.com 0.47402
4 yandex.ru 0.45142 google.pl 0.42487
5 google.pl 0.44536 ups.com 0.40025
6 lijit.com 0.43817 newrelic.com 0.39055
7 nfl.com 0.42888 hootsuite.com 0.38820
8 rubinproject.com 0.42612 mgid.com 0.38804
9 pubmatic.com 0.42446 pixnet.com 0.38726
10 demdex.net 0.41909 imgur.com 0.38695

Table 4.10: Top nodes of TT graphs according to their normalized degree centrality

Basing on Table 4.10 and the closeness centrality distribution in Figure 4.6, which for
opt-in policy is shifted to the right, trackers tend to be closer to each other when the
user opts in. This might be caused by the fact that opting-in enables the trackers to
establish a new connection with each other, hence increasing their closeness.

4.4.2 Correlation of Centrality Metrics

To understand the relationship between the centrality metrics for TT graphs and get
an idea of how a cookie policy can affect it, we perform correlation analysis, using
Pearson Correlation Coefficients, just like in the case of PT graphs. Table 4.11 presents
the computed results.

Policy DC-BC DC-CC BC-CC
Opt In 0.925 0.347 0.271
Opt Out 0.935 0.281 0.235

Table 4.11: Pearson Correlation Coefficient between Degree & Betweeness (DC-BC),
Degree & Closeness (DC - CC) and Betweeness & Closeness (BC-CC), for TT graphs
for different cookie policies. All results are statistically significant at p− value≤ 0.05

We find a positive association between the distribution of all metrics. Particularly
high is the correlation between degree and betweenness centralities, showing that well-
connected trackers are crucial to the information flow in the network. This correlation
is the only one that is increased by opting out. The lowest scores are observed for
the relationship between betweenness and closeness centrality, hinting at a lack of
correlation between these two metrics.
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Future Work

The measurements of privacy-related data, along with related studies, constitute a
methodology of exploring the influence of an individual’s cookie policy on the tracking
ecosystem. As it has been shown, measuring the state of online privacy and identify-
ing tracking activity of the Web is a non-trivial process, forcing us to compromise and
make certain simplifications on the way to creating the privacy measurement platform.
To paint a more detailed and comprehensive picture of the tracking ecosystem, the fol-
lowing limitations of the methodology presented in this paper should be addressed in
future work.

Deeper Crawls. CCT has been designed to visit only the main page of each do-
main. Such behavior was desired to produce consistent, easily replicable visits that
are lightweight in terms of computing power and network usage. However, this is an
obvious limitation, as more tracking could have been detected if CCT navigated to
the websites’ subdomains or interacted with their content. A possible improvement
envisions CCT locating menu on the main page of each domain and visiting each sub-
domain linked in that menu. This approach, however, would significantly increase
network usage and computing power, thus increasing the time required by CCT to
collect its data. Moreover, although it is desirable to go beyond the main page, such
browsing behavior requires careful planning of CCT’s online activity. Aspects such as
visit duration or interaction with the website’s content should be taken into account, as
they might potentially affect the tracing activity of the embedded third parties.

Custom Cookie Consent. As mentioned on page 18, CCT has been implemented
simplistically - whenever an option to reject all non-mandatory cookies is absent, CCT
leaves the domain. Hence, the platform does not interact with custom consent forms.
As introducing such a feature would significantly increase the system complexity, it
has been deemed as a functionality outside the scope of this study. However, CCT
is already capable of detecting buttons within privacy warnings that display custom
consent forms. To make CCT capable of filling them in, two improvements have to
be introduced. First of all, CCT must be able to locate buttons within consent forms
responsible for expressing and submitting user’s preferences. This might be done using
a heuristic approach similar to the one used for identifying clickable items. After
displaying custom consent banner, CCT would look for HTML form tag. Using XPath

37



Chapter 5. Future Work 38

expressions, it would then look for any descendant input tags, using their id attribute,
CCT would then match individual form inputs with text in the label tags. The second
improvement is to use NLP/IR model, such as bag-of-words or TF-IDF, to semantically
analyze the text corresponding to form inputs, so that CCT knows what it agrees to.
Using these two improvements, CCT would be able to film in a standard HTML form,
which could be finally submitted by clicking input tag with type="submit" attribute
within the identified form.

Detecting Cookie Synchronization. As mentioned in Section 3.2.7, companies such
as DoubleClick have recently begun encrypting or cryptographically hashing their
cookies. An improvement that should be therefore introduced into CCT is a cookie-
less mechanism of detecting cookie synchronization. To achieve this, one could follow
the approach used by [27] and use cookie synchronizations detected by a heuristic al-
gorithm as a ground truth dataset, on which a machine learning algorithm is trained.
The first step taken in that direction would be to create a dataset used for training the
classifier. This could be done in two ways. The first method envisions adding a feature
to CCT that would allow the platform to crawl significantly more than 1000 websites
from the Tranco and use its heuristic algorithm to detect these HTTP requests which
are used for cookie sharing. Beyond these confirmed events, the dataset would also
contain these requests which were initially selected by the CCT as potential id-sharing
events, but eventually were rejected as they did not match the cookie already observed
by CCT. These requests’ headers would be then stored as features in the dataset, with
binary labels indicating if a request is a cookie synchronization or not. Another ap-
proach is to create a browser plugin using the same heuristic cookie synchronization
detection algorithm as the previous solution. This plugin would not be used as part of
CCT, and hence would not use Selenium to crawl a predefined set of domains. Instead,
it would be distributed among volunteers who would agree to have their HTTP traffic
analyzed for potential cookie synchronization. This approach would not analyze the
content the volunteers receive, but rather the metadata of the requests made by their
browsers. Whichever, method of creating cookie synchronization is used, according to
[27] such data with binary labels would detect cookie synchronization with high accu-
racy, even if the shared IDs are obfuscated. A combination of the heuristic approach
used by the CCT and the ML approach would surely increase the recall of cookie
synchronization detection, thus creating a more realistic model of the online tracking
ecosystem.



Chapter 6

Conclusions

The first goal - designing a methodology of collecting privacy and tracking related data
and implement it as a privacy research platform - has been successfully met. Cookie
Crumble Tracer, a privacy measurement tool capable of automated data collection with
limited human supervision, has been designed and implemented. It has proved to
be an effective way of solving the main objectives of this study - visiting a set of
predefined domains, locating specific Document Object Elements corresponding to
Cookie Privacy Warnings with adequate recall, and interacting with them to modify the
cookies set in the browser. To collect its data and measure the user’s impact on creating
the online tracking ecosystem, CCT visited 1000 most popular domains according
to Tranco list, finding 497 websites containing a cookie privacy warning. What is
more, CCT has proved to be successful at detecting cookie synchronization - a privacy
intruding mechanism used to leak potentially sensitive data.

The data collected by interacting with Cookie Privacy Warnings has been used to
create graph models representing the ecosystem of publishers and trackers that users
build around themselves. These graphs capture different aspects of the online tracking
ecosystem. The analysis of PT graphs show that half of all distinct trackers is hosted
by only 32% of publishers when opting in and 25% when opting out. Similar dispro-
portion has been reported by examining the TT graphs - just 11% of all trackers is
responsible for 50% of all data sharing.

By deploying various graph metrics we have been able to detect domains, mostly track-
ers, of high embeddedness with respect to connectivity with other nodes. By observing
how cookie policies change the rankings of most influential network vertices we have
learned one thing - the structure of the online tracking ecosystem is not significantly
affected by either opt-in or opt-out policy. The policy affects the size of the network
- opting out can reduce the number of observed trackers in the Publisher-Trackers
network by around 38% and around 17% in the Trackers-Trackers network. More-
over, opting out can reduce the number of collaborating tracker pairs by 35% and the
amount of data shared between third parties by up to 40%. However, the structure of
the network and the centrality of individual nodes remain very similar for both cookie
policies. Rankings of top domains within the networks, as ranked by different metrics,
have been observed to be almost immutable, with top positions firmly occupied by
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companies such as Google, Facebook, or Amazon. Opting out has been observed to
increase the centrality of large, well-known companies, relative to the other, less im-
portant nodes in the network. This points to the fact that GDPR enforcement has little
influence on these companies, both in terms of their importance in the online tracking
ecosystem, or coverage across websites. Hence GDPR poses no threat to these com-
panies’ dominance in the tracking environment developed around individual users.

By building CCT we have provided a tool that can measure how an individual user
affects the online tracking ecosystem, which gradually builds around them as more
and more id-like cookies are set in the browser. In this study, we have used websites
from the Tranco list, but this list could be substituted for any other set of domains. Any
person wishing to study their online privacy can use domains extracted, for example,
from their browser history. In this way, CCT enables measurements on how much
control over their privacy a person with a specific browsing pattern has.

In conclusion, Cookie Crumble Tracer, together with collected data and its subsequent
analysis, can be seen as a contribution to the area of online privacy research. A lim-
ited number of studies have been conducted into the structure of the online tracking
ecosystem, with none of them focusing on directly interacting with GDPR Cookie Pri-
vacy Warnings. In previous work, data was collected through user studies, meaning
that the cookie policy adopted by these users was not treated as a factor potentially in-
fluencing the online tracking ecosystem. Our study contributes with a novel approach
that successfully simulates human-like behavior, thus shedding light on the state of the
online tracking ecosystem at a more personal level.
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