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Abstract
Nowadays, many websites display cookie privacy warnings to conform to the Gen-
eral Data Protection Regulation and the ePrivacy Directive introduced by the Euro-
pean Union, requiring companies to obtain the user’s consent before setting any non-
essential cookies. For the purposes of this research, an automated web crawler was
developed to systematically identify and collect cookie notices and cookie data.

In this study, I perform an empirical analysis of the cookie setting behavior and cookie
notices found on the top 1,000 most visited websites in 2020. The web crawler found
that approximately 54% of websites displayed a cookie notice and any interaction with
it usually results in an increased number of cookies. The data analysis primarily fo-
cuses on the options presented within these cookie notices and evaluates the impact
of choosing one of these options in terms of the number and the type of cookies set
afterwards.
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Chapter 1

Introduction

Cookies have become an essential part of the internet, they enhance user’s browsing
experience by allowing websites to function more efficiently. Cookies help web servers
to identify their clients between subsequent visits, consequently, allowing implemen-
tation of functionalities such as remembering user’s language preferences, wishlists,
creating personalised user interfaces and advertisements. Admittedly, this requires
cookies to store some data about the visitors hence creating an environment where vis-
itor’s preferences and browsing behaviour can be easily tracked, in fact, the tracking
can span across multiple websites if sufficient actors are involved. This shortcoming
is often exploited by advertising and web analytics companies that use cookie-based
tracking to deliver their services. User tracking raises some obvious privacy concerns
since the tracking ecosystem is seldom transparent to the visitor [32], can lead to per-
sonal data leakage [16][23] and is mostly controlled by very few major companies
[15][28][20].

As a result, governing bodies introduced legislation to protect users and their personal
data online. In 2018, the European Union introduced the General Data Protection Reg-
ulation (GDPR) which states that in some cases cookies are considered to be personal
data, also, the GDPR requires that every entity collecting personal data obtains a per-
son’s consent before storing the data. In 2002 EU introduced ePrivacy Directive, which
was later amended in 2009, stating that a company must obtain the user’s consent be-
fore setting any cookie that is not essential for the basic website’s functionality. The
consent must be freely given and obtained by a positive affirmative action and the visi-
tor should be able to access the website even after refusing to give consent. To comply
with the GDPR and ePD websites introduced cookie notices.

Research suggests that not all websites that use cookies show cookie notices [14][10][27]
and others demonstrate behaviour possibly violating the GDPR despite displaying
cookie dialogs. Studies have found that many websites place tracking cookies before
receiving the user’s consent [25][29] and the majority of cookie notices do not give vis-
itors an option to refuse consent [33][25][29]. Majority of the research studying cookie
notices focus on options presented to the users or their perception of cookie dialogs but
seldom focuses on the cookie setting behaviour resulting from the interactions with the
cookie dialog. The studies that do inspect the cookie setting behaviour either perform
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Chapter 1. Introduction 2

the dialog interactions manually [29][25], or are limited to the collection of only a
fraction of third-party cookies [27].

Therefore, my goal was to create a web crawler capable of detecting cookie dialogs,
identifying options presented to the visitor, interacting with the dialog and collecting
cookies in order to measure the cookie setting behaviour prior and after interactions
with the cookie dialogs. Further, I wanted to design a tool that collects data with no or
very limited human interaction hence possibly serving larger-scale research projects.

Using the implemented program I performed an automated crawl on the 1,000 most
visited websites in 20201, with the aim to answer the questions about cookie notices
and cookie setting behaviour, namely:

• How often websites display cookie notices?

• How often cookie notices block the contents of the web page hence forcing the
user to make a cookie management choice?

• What consent options are presented within the cookie notices? Do the consent
options differ for dialogs that do and do not block website’s contents? How often
cookie notices nudge the visitor to give consent?

• How many websites set cookies before the visitor gives consent? And how many
of those cookies could potentially be used for tracking?

• How cookie setting behaviour changes when the visitor gives or refuses consent,
or closes the dialog?

• What are the most prevalent cross-site trackers upon loading the page and after
giving or refusing consent?

I have found that 54.3% of the crawled websites displayed a cookie dialog and the
automated tool performed dialog identification with 98% accuracy. However, system’s
performance results are biased towards the set of websites used during the development
process, therefore, I evaluated the tool’s performance on a non-overlapping subset of
100 websites. The tool detected cookie notices with the accuracy of 93.0% with no hu-
man interaction and successfully identified 92.8% of the interactive elements presented
in the cookie notices. Moreover, I have found that on the first page of the dialog, 88.6%
display an opt-in button and only 10.8% contain an opt-out button. In addition, 47.0%
of the cookie dialogs presenting a binary choice and 66.3% of the dialgos displaying
a cookie management button are nudging the visitor towards giving consent. 95.8%
of websites set at least one cookie upon loading the web page and 91.7% set at least
one ID-like cookie. Moreover, based on the data collected, the top 20 most prevalent
trackers identified upon loading the website place cookies on an approximately equal
number of websites that do and do not display cookie dialogs.

In summary, the main contributions of the work performed include:

• Designing and implementing a semi-automated cookie notice detection and anal-
ysis tool that can also work well in fully-autonomous mode.

1According to the Tranco [24] list available at https://tranco-list.eu/list/52XN
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• A dataset of cookie notices and cookies set by the top 1,000 most visited web-
sites.

• Measurement of differences in cookie setting behaviour upon loading the web-
site and after interacting with the cookie notice.



Chapter 2

Background

2.1 Web Cookies

World Wide Web is probably the best-known application of the Internet. WWW is
based on an application-layer protocol – HTTP, which supports the communication
between a client and a server. HTTP is a stateless protocol because no information
about the client is stored on the server’s side. However, to improve user experience on
the Internet it is helpful for a website to identify its clients between subsequent visits.
This is where HTTP cookies come into place.

Cookies are an addition to HTTP that help to maintain its state. More precisely, cookies
are small data structures that allow the web server to track user’s activity, and are stored
on the user’s local hard drive as name-value pairs, which are generated upon the initial
visit to the specific website. In practice cookies enhance people’s browsing experience:
they help the server to remember the user’s language preferences or the contents of the
user’s shopping cart, also they allow personalized user interface and ads. In addition,
cookies allow the server to continue from where it let off the last time the user visited
the website.

2.2 Types of Web Cookies

HTTP cookies can be classified into different categories based on some attributes of
the cookie or the purpose it serves.

2.2.1 Cookie classification based on lifetime

Based on Max-Age attribute which indicates the maximum lifetime, cookies are di-
vided into:

• Session cookies which do not have Max-Age or Expires attribute and are stored
only for the duration of the session. In other words, these are deleted after the
browser is closed.

4



Chapter 2. Background 5

• Persistent cookies which are stored on the user’s local hard drive and are ac-
cessed every time the user visits the specific web page. These can have a lifetime
ranging from a few minutes to a few years and are stored until they expire or are
deleted manually.

2.2.2 Cookie classification based on origin

In addition, cookies are classified according to their origin, namely into:

• First-party cookies which are set by the domain of the website that the user is
visiting.

• Third-party cookies which are set by a different domain than the user is access-
ing.

2.2.3 Cookie classification based on purpose

Cookies can be classified based on the purpose they serve. This classification is slightly
more ambiguous, however, these cookie subgroups are often mentioned in cookie con-
sent notices and cookie policies and in general can help the user to understand how their
data is collected and used when browsing the internet. Cookie classification based on
their intended purpose, is closely related to cookie laws, for instance GDPR and ePri-
vacy Directive (see Section 2.4), where there are different requirements for storing
different types of cookies. The EU outlines four cookie categories [8]:

• Strictly necessary cookies - cookies that are essential for delivering the basic
website functionality.

• Preference cookies - cookies that help the web server to recall some information
about the user based on their earlier choices.

• Analytics cookies - cookies that help the website to improve its functionality.
Although they are used to track user’s browsing activity, collected information
is said to be anonymous.

• Marketing cookies - cookies that help advertising companies to select person-
alised ads based on users browsing patterns and activity.

2.3 Privacy concerns with regards to cookies

Cookies used for marketing or website traffic analytics purposes do track user’s brows-
ing behaviour. Analytics cookies are usually pseudo-anonymous, whereas marketing
cookies assign each user an ID that can then identify them throughout the web and thus
help marketing companies build user profiles that can be used for behavioural adver-
tisement targeting. Tracking user’s behaviour has become a big privacy concern since
most of the tracking cookies are serviced by third-party companies, which collect and
store information about the user even if the user never visits that specific company’s
website. It is even more concerning if the same third-party company is being used
by many different websites or when multiple first-party and third-party companies use
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cookie-syncing. In fact, a study performed by Narayanan et al. [15] showed that most
third-party companies implement cookie-syncing, however, Urban et al. [32] suggest
that the number of relation between third-parties has decreased since the introduction
of the GDPR. Cookie-syncing allows cross-site tracking which helps to build more
comprehensive user profiles that can later be used by or sold to other advertisement
companies hence it can be seen as a violation of user’s privacy since the tracking pro-
cess is often not transparent to the user.

2.4 EU Cookie Regulations

In 2018 European Union introduced General Data Protection Regulation (GDPR),
which states that despite not containing any personal information cookies that are used
as user identifiers are considered to be personal data. By GDPR companies need to
obtain the user’s consent before storing any of their personal information or show a le-
gitimate interest to store data. Moreover, consent must be freely given and obtained by
positive affirmative action. The ePrivacy Directive (ePD) introduced by the EU in 2002
and amended in 2009, requires websites to obtain the user’s consent before setting any
cookies other than those that are necessary for the basic website functionality, in addi-
tion, websites must accommodate visitors even if they refuse consent unless there is a
reasonable justification not to. However, there is little guidance defining what makes a
cookie strictly necessary hence this is a grey area that is yet to be resolved. GDPR and
ePD were the motivation behind cookie privacy warnings displayed on many websites.
These privacy warnings must identify the clear purpose and precise information of any
cookies used and any data collection that occurs as a consequence. More importantly,
companies must allow the user to give or withdraw consent easily at any given time in
the most user-friendly way possible. When third-party cookies are used it is required
to specify the organizations that are allowed to access this data. Lastly, EU suggests
that websites should not store cookies with an expiration date exceeding 1 year.

The UK similarly to other European countries has its versions of the GDPR and the
eDP, called UK GDPR and PECR. The regulations introduce similar principles regard-
ing the use of cookies that hold even after the UK has left the EU.

2.5 Discussion on previous work

Extensive research in the field of user security and web privacy focuses on cookies
and other tracking technologies. As a result, multiple privacy management tools, for
instance, Ghostery1 and Disconnect2, were introduced to help minimize the preva-
lence of the online trackers. Englehardt et. al [15] built a tracking measurement plat-
form OpenWPM and analysed different tracking technologies, including cookies and
cookie-syncing, over the top 1-million websites, while evaluating the effectiveness of
previously mentioned privacy management tools. S. Mattu [26] created a web applica-
tion Blacklight based on OpenWPM which demonstrates what tracking technologies

1Ghostery. URL: https://www.ghostery.com.
2Disconnect. URL: https://disconnect.me/.

https://www.ghostery.com
https://disconnect.me/
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are used in different websites. Similarly other studies on cookies focus on privacy
issues arising from the use of third-party cookies that are used to track users online.
Englehardt et al. [16] showed that if the number of unrelated third-party identifying
cookies is high then they can be connected and used to track a user across the inter-
net. Hu et al. [20] measured the interconnectedness of the third-party cookies and
suggested that it is mostly influenced by a few major companies. Roesner et al. [28]
investigated the capabilities of cookie-based tracking and found that some third-party
cookie setting techniques are resistant to third-party cookie blocking.

Since the introduction of the GDPR and later amendment of ePrivacy Directive re-
searchers inspected cookie dialogs and cookie setting behaviour, while evaluating the
effects of the regulations and identifying possible violations. Eijk et al. [14] extended
OpenWPM to automatically detect cookie notices using I don’t care about cookies3

CSS selector list. This extended tool was used to crawl 1800 websites, failed to con-
nect to approximately 15% and found a cookie dialog on 40.2% websites with the
accuracy of 91%. The lower accuracy is due to some limitations of the implementa-
tion of the tool, namely the CSS selector list not including selectors corresponding to
cookie-walls. However, neither OpenWPM or the later version of the tool explores
cookie dialogs by investigating how dialog interactions impact cookie-based tracking.

Dabrowski et al. [9] compared cookie setting behaviour for EU and USA based vis-
itors before and after the GDPR. Study concludes that overall the number of cookies
decreased for both EU and USA users. However, the EU visitors experience a greater
effect of the GDPR since 49.3% of the Alexa Top 1,000 websites4 that do set cookies
upon loading the website for visitors outside EU, do not set any cookies for users based
in EU. Degeling et al. [10] discussed the effect of the GDPR fot the top 500 websites
in 28 EU countries, focusing on changes in privacy policies and cookie banners. The
study concluded that 63.2% of websites display a cookie dialog and the majority of the
cookie banners are confirmation only or do not display any consent options. Further,
Degeling et al. concluded that it is challenging to generate fully compliant cookie no-
tices even when using cookie consent libraries and highlighted the ambiguity of strictly
necessary cookies since the definition can be used to website owners advantage.

Matte et al. [25] performed semi-automatic crawl on approximately 23,000 EU-based
websites, identifying cookie dialogs and measuring if the cookie dialogs and cookie
setting behaviour conforms to the GDPR and the ePrivacy Directive. The study fo-
cuses on cookie banners generated by known Consent Management Providers (CMPs)
and the banner identification is automated, however, it did not include other cookie
dialogs and the dialog interactions are performed manually. Cookie banners generated
by CMPs were found on 6.2% of the crawled websites. Moreover, the inspection of
the subset containing 560 banner displaying websites suggests that 6.8% do not give
the visitor an option to opt-out. 9.9% of the websites register consent before visitor’s
agreement, for at least one and 5.3% register consent for all five of the following cookie
purposes: information storage, personalisation, advertising, content selection or ana-
lytics. Further, 4.8% of the websites store consent after the user chooses to opt-out.

3Daniel Kladnik. I don’t care about cookies. URL: https : / / www . i - dont - care - about -
cookies.eu/.

4Alexa Top Sites. URL: https://www.alexa.com/topsites.

https://www.i-dont-care-about-cookies.eu/
https://www.i-dont-care-about-cookies.eu/
https://www.alexa.com/topsites
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Last, the research highlights some of the dark patterns of the cookie banner design,
for example, hiding the second page of the cookie notice, which contains the opt-out
button, by using ambiguous names for the cookie settings buttons, for instance, Learn
more. Continuation of the previous study performed by Utz et a. [33] focuses on user’s
perception on the choices and information displayed within the dialog, dialog’s loca-
tion and design. In addition, the study presents statistical information on the sample of
1,000 cookie dialogs found in the former study. These differ from the findings of this
study and are briefly discussed in Section 5.1.

Sanchez-Rola et al. [29] manually inspected 2,000 websites, focusing on privacy poli-
cies and cookie notices, and tried to opt-out from the use of tracking cookies. The study
found that 92% of websites perform some form of cookie-based tracking. Moreover,
the influence of the GDPR can also be seen on US-based websites, whereas China-
based websites did not contain any cookie notices or consent options. In addition, very
few cookie banners display an opt-out button and clicking opt-out button does not re-
sult in a decreased number of cookies. The findings suggest that sometimes tracking
cookies are set prior to receiving the user’s consent and since opting-out has no effect
on the tracking cookies that have been saved, the user does not have an option to opt-
out even if such option is presented in the cookie notice. Last, B. Molnar [27] built a
semi-automated web crawler that identifies cookie notices with 92.1% precision and
allows cookie collection prior and after interactions with a cookie notice. However, the
tool is limited to the collection of only a fraction of third-party cookies.



Chapter 3

Design and Implementation

The main goal of the project was to collect cookie dialogs, identify the options user has
and measure how cookie setting behaviour changes depending on the interactions with
the dialog. This requires web scraping large amount of web pages and performing this
manually is time consuming, therefore, I have build semi-automated tool which col-
lects all the necessary data. The manual steps help to achieve higher accuracy when
identifying cookie dialogs and evaluate the correctness and reliability of the data col-
lected. These are recommended but not required, thus the tool can be used as fully
automated if a greater error margin is allowed.

3.1 Requirements

System design and implementation decisions are based on the functional and non-
functional requirements. Iterative requirement verification and validation during the
development process ensured the final system is of the expected functionality and qual-
ity.

3.1.1 Functional Requirements

The system should autonomously crawl a list of websites, collect cookies and detect
cookie dialogs. If cookie dialog is displayed, the system should identify the interactive
elements (buttons and hyperlinks) on the first page of the dialog and measure changes
in cookie setting behaviour when different interactive elements are clicked. In addition,
the system should have a user interface to assist the user with manual cookie dialog
validation and identification.

3.1.2 Non-functional Requirements

The main purpose of the system is to crawl a variety of websites hence it should have
certain properties, namely robustness, fault tolerance and recoverability, to allow the
system to successfully operate in this dynamic environment. Network connection and
website server errors can have an impact on the response time and the reliability of

9
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the data collected, thus failures should be expected at any time of the execution. The
system crawls an arbitrary number of websites every time it is executed hence it should
be stateful to ensure recovery when failures occur and it should keep the copy of the
data collected to prevent data corruption or loss.

Further, the time needed for each of the main tasks, namely identifying the cookie
dialog and interacting with it, should not exceed thirty minutes. The time limit on in-
dividual tasks ensures that the program executes within a reasonable amount of time,
also, it helps to deal with unexpected system failures, for example, unresponsive Web-
Driver that needs to be restarted. Last, it could be argued that it is more cost-efficient
to manually inspect a website than wait over 30 minutes.

Moreover, it is desirable to achieve cookie dialog detection accuracy of at least 70%,
however, this figure might not be achievable without manual interaction for any truly
random arbitrary set of websites due to the fast-changing nature of web development
and other problems discussed later (Sections 3.4.1.2 and 4.1).

3.2 Data sets

3.2.1 Top Websites

To identify the most popular websites, I have used the Tranco rankings1. It combines
rankings of the three providers: Alexa2, Cisco Umbrella3 and Majestic4. Tranco rank-
ings are designed to minimize the effect of website traffic manipulation, hence resulting
in a more stable and consistent list over time. For the purpose of this study, I chose to
use the list of most popular websites in 2020. It should be noted that the list includes
multiple domains that only differ by TLDs (e.g. google.com and google.co.uk) and
domains with their corresponding shortened versions (e.g. facebook.com and fb.me).

3.2.2 Cookie Dialog Identifiers

One of the system requirements was to have an automated program, therefore it was
necessary to perform cookie dialog identification with no human interaction. Every
web page uses custom HTML structure and element naming practices, hence making it
more difficult to find a systematic approach. Other research in the field, suggests using
community maintained CSS selector lists, which are designed for browser extensions
that hide cookie dialogs [14] [27].

I have used combination of two CSS selector lists, namely EasyList5 and I don’t care

1The Tranco list generated on 4th of January 2021 available at https://tranco-list.eu/list/
52XN

2Alexa Top Sites. URL: https://www.alexa.com/topsites.
3Cisco Umbrella 1 Million. URL: https://umbrella.cisco.com/blog/cisco-umbrella-1-

million.
4The Majestic Million. URL: https://majestic.com/reports/majestic-million.
5EasyList. URL: https://easylist.to/.

https://tranco-list.eu/list/52XN
https://tranco-list.eu/list/52XN
https://www.alexa.com/topsites
https://umbrella.cisco.com/blog/cisco-umbrella-1-million
https://umbrella.cisco.com/blog/cisco-umbrella-1-million
https://majestic.com/reports/majestic-million
https://easylist.to/
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about cookies6. Combination of these lists results in two sets of CSS selectors: domain
specific, which are stored as domain, CSS selector pairs, and global CSS selectors.
Although designed for a different purpose, these together with certain assumptions and
validation procedures have proven to work relatively well for cookie notice detection
(more details in Section 3.4.1.2).

3.3 Browser Automation

Although web crawling process is automated, it is important that all web interactions
appear similarly to those of a human agent. To simulate this behaviour the program
uses Selenium Chrome Webdriver (version 89.0.4389.23), which allows automated
interaction with web pages and the Chrome browser itself, such as connecting to
web pages, clicking DOM elements, taking screenshots and collecting cookies, all of
which are essential for the purpose of this study. The reason for using Google Chrome
browser for this study is two-fold. First, it has the highest browser market share among
desktop users [4]. Second, at the time of the study Chrome has looser privacy settings
by default compared to other popular browsers. For example, its main competitors
Firefox and Safari have features to reduce the tracking activity, including blocking
third-party cookies by default [31][35]. In addition, Safari restricts the expiration date
of cookies by setting it to a maximum of 7 days [35]. Since I want to capture cookie
setting behaviour as it is and collect all cookies set by first and third parties without
altered retention periods, Chrome browser’s behaviour is desirable.

When building any web automation tool it is a good practice to consider each website’s
robots exclusion protocol specified in robots.txt file. However, this tool is essentially
a simple web crawling tool: it only visits the home page of each website and the
interaction speed does not exceed the capabilities of a human user, therefore I have
decided to disregard robots.txt file.

3.3.1 Visiting websites

The Tranco list contains only the domain names of the websites (e.g. domain.com),
however, Selenium ChromeDriver requires a complete URL to open a website. Since
not all domains use HTTPS yet, the system constructs 4 different URLs and then tries
to open a website in the order specified:

1. https://www.domain.com

2. http://www.domain.com

3. https://domain.com

4. http://domain.com

Only when opening all URLs results in a connection failure the connection is consid-
ered unsuccessful and the domain is excluded from further analysis.

6Daniel Kladnik. I don’t care about cookies. URL: https : / / www . i - dont - care - about -
cookies.eu/.

https://www.i-dont-care-about-cookies.eu/
https://www.i-dont-care-about-cookies.eu/
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3.3.2 Unsuccessful Connections

The Selenium, which is used for web automation, is detectable, thus some websites
block web requests sent by ChromeDriver, making the domain unreachable to the web
crawler. These and other connection failures are detected by inspecting the header of
the web page, which in Chrome is set to This site can’t be reached whenever a network
error occurs, or checking for HTTP error codes. In addition, I have noticed that there
are web pages that redirect to Google search engine despite having a domain name
which does not indicate any relation to Google (e.g breedsthey.com), thus these are
also considered to be unsuccessful connections.

Although, automatic procedures identify most of the websites that should be excluded
from this study, there are few exceptions, where human judgement is required, namely:
content delivery websites or other websites that are not meant for users browsing the
internet, as well as web pages that exist even though they mention that the service is
no longer available or unavailable in the visitor’s area. In addition, some websites use
Capthca tests, such as reCAPTCHA, to distinguish real users from malicious bots. It
is difficult to predict when Capthca tests will occur and automated Captcha bypassing
scripts do not conform to ethical programming practices hence are not implemented.
Therefore, it is left as a responsibility of the user running the program to identify such
cases and exclude domains from the study.

3.3.3 Cookie collection

Selenium WebDriver API provides a method to collect cookies, however, WebDriver’s
interactions are limited to the scope of current domain, thus the majority of third-
party cookies remain uncaptured. To get more accurate measurements, system takes
advantage of Chrome DevTool Protocol command Network.getAllCookies7 which can
be executed using the ChromeDriver.

When collecting cookies it is important to allow the website a reasonable time to set
all the cookies, thus the program waits 30 seconds after loading the website before col-
lection. Afterwards, the cookies are collected in 30 second intervals until the number
of cookies present does not change between two latest intervals or until the cycle is
repeated five times.

To distinguish between cookies set by different websites, or even by the same website
when interacting with different dialog options, the cookies are cleared before every
collection, as the method mentioned above returns all cookies present in the browser
at the time.

7Chrome DevTools Protocol. URL: https : / / chromedevtools . github . io / devtools -
protocol/.

https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/
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3.4 System structure

The system is divided into two smaller subprograms, each corresponding to a different
functional requirement. Since the consecutive execution of the two subprograms form
the whole system, this can be viewed as the program running in two phases, namely:

1. Phase 1: Visit the websites, collect cookies and identify cookie dialog if present.

2. Phase 2: Visit the websites displaying a cookie dialog, interact with a cookie
dialog and collect cookies after each action.

The specification of the system does not require two-phase design, however, the sepa-
ration of these processes allows user to perform some manual procedures, namely:

1. Validate correctly identified cookie dialogs, detect false positives and websites
where the dialog was not found.

2. Manually add cookie dialog CSS tags.

Since the goal of the project was to design an automated system, these manual pro-
cedures are optional, however, for the purpose of this study it was important to find
majority of the cookie dialogs and make sure that the data collected is indeed correct,
therefore both of these steps were performed.

Lastly, from the developer’s perspective, two-phase system allows to test both sub-
programs in isolation. As each subprogram has different functionality, testing them
separately helps to determine which functional requirements are satisfied.

3.4.1 Phase 1: Visit top websites, collect cookies and identify cookie
dialog if present.

The main objective of the Phase 1 is to accurately identify the cookie dialogs, this
includes detecting the dialogs as well as minimizing the number of falsely identified
non-dialog elements 8.

For the purpose of this study it was important to capture the exact position and size of
the dialog in addition to its contents, including text and buttons, therefore, this study
required extensive manual dialog analysis and tagging which normally would not be
necessary.

3.4.1.1 Assumptions about Cookie Dialogs

First, I assume a website displays at maximum one cookie dialog. Although this some-
times may not be the case (see Figure 3.1), it is difficult to differentiate between the
two elements representing the same dialog and two different dialogs without manual
verification. In addition, interacting with multiple dialogs increases the number of re-
quests sent to the website possibly raising the likelihood of Captcha tests and adds
complexity in the Phase 2 and data analysis, therefore, I have decided that it is beyond
the scope of this study.

8Later I refer to these as True Positives and False Positives respectively.
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Figure 3.1: Website displaying two cookie dialogs: one in the center and one at the
bottom of the web page. Source: wirtualnemedia.pl

Second, if the cookie dialog is not visible upon loading a website, I assume that the
website does not display a cookie dialog. This includes web pages where there is
another pop-up window requiring interaction before loading the dialog or a user is
required to choose a country specific website.

Third, similarly to the observation made by Sanchez-Rola et al. [29] that cookie notices
on China-based websites are uncommon, I have noticed that East Asian websites rarely
display cookie dialogs. Many countries outside the EU do not have strict regulations
with regards to cookies, in addition, most of the East Asian websites appear to be
targeted to the domestic audience. This is likely to be the reason why very few websites
show a cookie dialog. There are many Chinese, Korean and Japanese websites that
score high places in top rankings and extensive search for a cookie dialog that does not
exists consumes a large amount of resources, therefore, I have assumed that websites
containing Chinese, Korean or Japanese characters in the title do not contain cookie
dialogs.

Last, websites contain different types privacy warnings and cookie setting tools, there-
fore it is important to define a cookie dialog in the scope of this study. Cookie dialog
is a pop-up window or a banner which clearly states that cookies or tracking tools are
used, or includes information on storing or using user’s personal data. In addition, the
contents of a cookie dialog are focused on cookies hence the decision of an interac-
tion is based on privacy preferences and nothing else, however, this requires human
judgement hence is not detected automatically. Examples are included in Appendix A.
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3.4.1.2 Identifying cookie dialogs

The system uses Beautiful Soup9 library to parse and search website’s HTML code,
as it is considered to be more time efficient than similar methods from the Selenium
WebDriver API. However, some cookie dialogs are wrapped within an iframe and
the HTML code inside is not visible to ChromeDriver, and consequently to Beautiful
Soup. Therefore, the system needs to iterate through iframe elements and search for
the dialog inside. There might be an arbitrary number of iframe tags, some of which
could be nested, and exploring each adds time complexity, thus only level 1 of HTML
tree structure is explored.

For cookie dialog identification system uses two sets of CSS selectors, namely, do-
main specific and global (Section 3.2.2). The global CSS selector list consists of al-
most 18,000 entries, hence at the worst-case the program needs to search the web page
HTML approximately 18,000 times. Further, the number of iterations increase linearly,
depending on the number of iframe elements explored. In fact, the average-case sce-
nario is likely to be close to the worst-case since the websites are updated frequently,
the domain specific selectors can become out of date, in addition, the system iterates
over global selector list for all websites that do not display a cookie dialog. To illus-
trate, only 3.7% of crawled websites contained a cookie dialog which was successfully
identified by a domain specific CSS selector.

First, if visited domain is in the domain specific list, the system searches for an element
with the specified CSS tag, this includes inspection of the iframe elements. If no
dialog elements are found using the domain specific CSS selector or the domain is not
in the list, the system iterates through global selectors and find all possible matches.
Last, if no dialog elements are found, the system inspects the iframe elements using
global CSS selectors. Since this step computationally expensive, it is executed only
when absolutely needed.

When system identifies a possible cookie dialog, it saves the CSS tag and takes a
screenshot of a dialog for manual verification. Since the system iterates the global
CSS selector list in full, it might find multiple elements and it is user’s responsibility to
decide if any of these elements represent a cookie dialog, by inspecting the screenshots.
Alternatively, when system is executed in fully-automated mode, it assumes the first
element found is the dialog.

Moreover, by assumption stated in Section 3.4.1.1 a website can only display one
dialog and in fact it is rare for the system to find more than one distinct dialog per
website. Usually when multiple cookie dialog elements are found all of these are
different HTML nodes of the same dialog. To illustrate some of these nodes might
be ascendants or descendants of the actual dialog, thus their visual representation and
captured contents (text and buttons) might differ (see Figure 3.2). Admittedly, in some
cases it does not matter which HTML node is chosen to represent the cookie dialog as
long as it captures its contents and is of a similar size as the cookie dialog displayed
(see Figure 3.3).

9Beautiful Soup. URL: https://www.crummy.com/software/BeautifulSoup/bs4/doc/.

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
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Figure 3.2: Three dialog elements found: the leftmost element represents the cookie
dialog best, whereas the element in the middle is a valid option only if the size of the ele-
ment does not have to resemble the exact size of the cookie dialog. Since the rightmost
element does not include the text, it is considered to be poor a dialog representation.
Source: docusign.com

3.4.1.3 Cookie Dialog Identification Improvements

The method described above does not find all the dialogs and there is a significant
number of falsely identified non-dialog elements. However, careful result analysis and
manual inspection of the HTML code of many websites lead to further improvements.

unigrams bigrams trigrams
cookie collects data your personal data
cookies personalised ads

track personalised content
tracking personal information

legitimate interest
improve products

your consent
your preferences

precise geolocation
geolocation data
your experience

Table 3.1: Most common n-grams in 500 cookie dialogs.

First, to reduce the number of false positives, I added textual verification step using
a modified list of the most common n-grams generated using around 500 cookie di-
alogs. Only the n-grams that are likely to help distinguish a cookie dialogs from other
elements where chosen (see Table 3.1). An element found using non-specific CSS se-
lector is considered to be a cookie dialog if it contains at least one of these n-grams.
In addition, the text is required to be of a certain length, this helps to discard smaller
elements such as buttons which would pass text verification otherwise (see rightmost
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Figure 3.3: Two dialog elements which look identical despite being different HTML
nodes. In this case both elements are good representations of the cookie dialog.
Source: wunderground.com

element in Figure 3.2). Since the list consists of English n-grams only, non-English
elements are translated by calling Google Translate API10 prior to performing textual
verification. Using translator creates some challenges in textual verification method,
for instance, word ordering in a sentences differ for different languages and there is
no guarantee the translator will account for this hence bigram or trigram search might
not be as effective. One of the possible solutions would be to extend the n-gram list
beyond English language, however, this requires a comprehensive data set covering
multiple languages in addition to ability to understand the language itself. Admittedly,
any of the n-grams could appear at any place on the web page, however, the system
only investigates candidate cookie dialogs, therefore, it is very unlikely that an element
found using a typical dialog CSS selector and containing a typical dialog text is not a
cookie dialog.

Second, although element screenshots are vital for manual verification, the process of
taking a screenshot may introduce faulty behaviour. Selenium throws ScreenshotEx-
ception when it is called to take a screenshot of an element having length or height
equal to zero. This usually happens in one of the following scenarios:

• There is a cookie dialog that is purposely not being displayed, for instance, a
website might contain a separate dialog for a mobile device, or a dialog used
in an older version of the web page. In this case, system benefits from Screen-
shotException since the element is indeed not an actual cookie dialog.

• There is a zero sized wrapper containing a cookie dialog that itself is visible (see
Figure 3.4). This is an issue since the raised ScreenshotException causes system
to fail when finding the dialog.

Therefore, I implemented additional functionality allowing system to inspect the chil-
dren of a possible cookie dialog when the ScreenshotException is raised (see Figure
3.4). Similarly to the process of finding a cookie dialog, children elements are required
to be visible and pass textual verification.

10Google Translate API for Python. URL: https://pypi.org/project/googletrans/.

https://pypi.org/project/googletrans/
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Figure 3.4: System finds a dialog wrapper of size zero (top) using a CSS selector
div[class∧="app gdpr-"]. Then by inspecting children elements it finds the actual
cookie dialog (bottom), its size and location. Source: howstuffworks.com

Third, manually investigating websites where the system failed to find a cookie dia-
log helped me to recognize patterns within the dialog’s HTML structure and HTML
element naming conventions. A lot of websites use Consent Management Providers
(CMPs) to manage cookies and display cookie notices. Each CMP use a very simi-
lar dialog structure and HTML element names across all websites using their services
hence making it easier to form a generalised approach in finding the cookie notices.
Therefore, I extended the global CSS selector list by adding CSS selectors for CMP
cookie dialogs I have observer. In addition, I added some selector specific behaviour,
for instance, some cookie dialogs created by one of the CMPs can be found using a se-
lector .truste box overlay, however, the dialog text and buttons are hidden within
an iframe. Therefore, ChromeDriver needs to switch to the iframe before accessing
the contenst of the cookie dialog. This is essential for performing textual verification
and interacting with buttons in Phase 2. To illustrate, all improvements mentioned
increased the number of cookies dialogs found by a global CSS selector from 191 to
371.

Last, I formed a list of keywords (see Figure 3.5) that could help to identify the cookie
dialogs that were missed otherwise. If there are no dialog elements found using the
specific and the global selectors, the system finds the HTML nodes that are most likely
to contain a cookie dialog, more specifically, the div nodes, and iterates through them
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searching for an element with class or id attribute containing any of the keywords.
If such element is found and it passes the textual verification it is likely to be a cookie
dialog. Consequently, a CSS selector identifying the cookie dialog is formed to make
the search process more efficient during the repeated executions or in the Phase 2.

Keywords: gdpr, cookie, privacy, policy, consent, notice.

Figure 3.5: List of keywords that help identify cookie dialogs.

3.4.2 Manual Verification

Manual verification step provides user with an interface to help evaluate cookie dialog
identification results, find errors or Captcha tests and choose the most appropriate CSS
selectors for cookie notice detection. Further, verification of the cookie dialogs gives
the user an opportunity to decide whether each element should indeed be classified as
a cookie dialog.

For each website successfully crawled website, the user is presented with a screenshot
and four choices, namely go back, incorrect, correct and error (see Figure 3.6). First,
the program iterates through websites where a cookie dialog was found and requires
the user to make a decision based on the cookie dialog screenshots. If there are mul-
tiple elements found using different selectors, the program iterates through multiple
screenshots until the user identifies the correct one. Since the CSS selector is embed-
ded within the metadata of the corresponding .png file, the list of the domain specific
CSS selectors is modified simultaneously. Alternatively if the element found is not
a cookie dialog, the screenshot of the full web page is displayed to confirm that the
website indeed does not contain a cookie dialog. Subsequently, the program iterates
through the websites where no dialog elements were found and asks the user to confirm
that the web page indeed does not display a dialog.

Figure 3.6: UI for manual verification step. Here user is presented with a cookie dialog
screenshot and four buttons for classification. Source: about.me

As a result, accuracy is computed, the list of domains containing cookie dialog is
altered and another list of domains where the dialog was not found and hence require
manual tagging is created.

There are certain limitations of this method. A screenshot is the visual representa-
tion of a web element hence inspecting many screenshots is fast and easy, however, a
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screenshot might create a false idea of what information is inside the captured HTML
element. As a result, system might fail to find some or all the contents of the dialog in
the Phase 2. For example, in Figure 3.7 the system fails to find the close button since
it is not a descendant of the found HTML node. Although this rarely happens, it is
important to acknowledge the fact, that not all system faults can be identified by sim-
ply inspecting cookie dialog screenshots. Thus, the manual verification tool outputs
accuracy with an arbitrary error, which varies depending on the dataset but is expected
to be small. Cookie notice identification accuracy is an approximate indicator of how
well the system is performing rather than the precise measure. Alternatively, a user
could be presented with HTML code in addition to a screenshot, however, manual in-
spection would require more time and resources which contradicts the main objective
of building an automated system.

Figure 3.7: A screenshot of a web element falsely suggests that the element represents
the complete cookie dialog. The close button is actually the sibling of this element hence
the cookie notice is not captured in full. Source: technologyreview.com

3.4.3 Manual Tagging

Manual tagging helps to find cookie dialogs on websites where these were missed or
incorrectly identified. The list of domains requiring manual tagging is generated in
manual screenshot verification step. It is the user’s responsibility to find a suitable
CSS selector, therefore manual tagging requires some previous knowledge of HTML.
To make process easier ChromeDriver opens each website and system asks to input a
corresponding CSS selector. To find a selector the user can use Elements section of
Chrome DevTools to first locate the dialog element and then either copy the selector
or construct an suitable alternative by inspecting HTML code (see Figure 3.8). As can
be seen, the CSS selector for the cookie dialog on facebook.com is a string of random
characters, in fact, approximately 13% of detected cookie dialogs in the top 1,000 web-
sites have non-human readable CSS selectors. Apart from a few cases where certain
assumptions can be made (e.g. all cookie dialogs on google have the same selector
independently of the TLD), these dialogs are not detected by any of the automated
methods described in this chapter. Manually adding such CSS selector is a temporary
solution since the selector can find the dialog only until the class names or id does not
change.

3.4.4 Phase 2: Visit websites displaying a cookie dialog, interact
with a cookie dialog and collect cookies after each action.

The main objective of the Phase 2 is to interact with the cookie dialogs and collect
cookies that are set after clicking different types of buttons. The system is designed to
simulate the behaviour of a typical internet user who is usually more concerned with
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Figure 3.8: Manual cookie dialog tagging process: user finds a cookie dialog and cor-
responding block of code within HTML using Chrome DevTools. Then can user either
copy the selector as demonstrated or in this case construct their own and enter it in the
terminal. Source: facebook.com

accessing the content of the web page than setting cookie preferences hence the system
only interacts with buttons available on the first page of the dialog.

3.4.4.1 Identifying options

Since different cookie dialogs contain different buttons, it is helpful to define button
categories. Categorising helps to differentiate between different types of buttons hence
making the button identification, cookie data storage and access easier. I defined seven
button categories, namely:

1. Opt-in

2. Opt-in necessary cookies

3. Opt-in pre-selected cookies

4. Cookie settings

5. Opt-out

6. Cookie or Privacy policy

7. Close

The system searches a button according to the order outlined above. To illustrate, when
a possible button element is found, the system first checks if it is an opt-in button. If
not, the system will continue going down the list until the appropriate category is
found, otherwise, it is determined that the element is not a button element. There are
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three different categories representing the choice to opt-in since semantically these
buttons are different and some cookie dialogs display more than one opt-in button.

Table 3.2: Keywords and keyword combinations for the following button categories:
Opt-in, Opt-in necessary cookies and Opt-in pre-selected cookies.

To find buttons available within the cookie dialog, first, the system needs to find the
dialog itself using the list of domain specific CSS selectors generated in the Phase
1. This step is crucial to the whole process, especially, in cases where the contents
of the dialog are within an iframe since the buttons are not visible to ChromeDriver
otherwise. To minimise the set of elements that need inspection, the system considers
the elements within the dialog and only explores the text nodes that do not have any
descendant text nodes. If the node or its parent has a typical button HTML tag, namely
button, div, a or span, or has an attribute role=option, system attempts to place
button within appropriate category by checking if the element’s text contains any of the
keywords specified (see Tables 3.2 and 3.3). The set of keywords was partially adopted
from the study performed by B. Molnar [27] in combination with careful analysis of
the dialogs collected over the course of this study. Similarly to textual verification
process described in Section 3.4.1.3, button classification uses Google Translate API
for foreign websites.

Since each button exclusively belongs to one category, the order of button categorisa-
tion matters. In addition, it helps to reduce the number of keyword combinations that
need to be checked. For instance, Save & Exit is categorised as an opt-in pre-selected
cookies button since it contains keyword save, it also contains a keyword exit cor-
responding to another category. Therefore, if the categorisation order was reversed,
system would need to introduce further text requirements, in this case, require Close
buttonss to contain a key word combination ¬save∧exit.

The method describe retrieves most of the buttons with the exception of buttons not
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Table 3.3: Keywords and keyword combinations for the following button categories:
Cookie settings, Opt-out, Cookie or Privacy policy and Close.

containing text. I have observed two types of buttons without text node, namely:

1. Buttons represented by HTML input tag with a type attribute equal to button
or submit. Similarly to the method described, these can be categorised by ex-
amining the value of either title or value attribute since it contains the text
displayed on the button.

2. Buttons that contain an icon or an image instead of textual value.

Finding and categorising icon-based buttons require a different approach since in this
case textual analysis is not applicable. I have observed that in the set of top 1,000
websites, icons are used exclusively for Close buttons and the icon itself is usually a
variation of symbol X. Therefore, one possible solution is to perform image recogni-
tion on either the image extracted from the source code or screenshot of the element.
However, websites rarely store icons as simple .png or .svg files, icons are often stored
as base64 encoded strings in .css file or stored in large sprite sheet together with other
smaller icons. On the other hand, screenshots have low resolution because the icons
and hence the web elements representing icons are very small and ChromeDriver does
not produce high-resolution images. As a result, image recognition would be com-
plex and may not yield accurate results. Therefore, I implemented a different approach
based on cookie notices’ HTML structures I have observed.

To find icon-based close buttons, the system searches HTML nodes that do not have
any text descendants and are likely to contain the icon, namely HTML tags: button, a,
svg, img, i, span. System iterates the list of HTML tags and finds elements matching
the query, when there is more than one element the left-most is assumed to be the
close button. In addition, graphic HTML tag elements (svg and img) are required to
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be square. Since this method is heavily based on assumptions, ChromeDriver performs
a sanity check by clicking the element and checking if dialog is no longer displayed
after the click.

3.4.4.2 Dialog Interactions

After all buttons are identified, the system starts interacting with the dialog. As men-
tioned previously, system simulates behaviour of a typical internet user who wants to
close the dialog with one click and access the contents of the web page. This means,
the ChromeDriver does not set any cookie preferences even if there is an option on the
first page of the dialog. Therefore, the system does not click Cookie settings or Cookie
or privacy policy buttons. For each of the buttons in other categories, ChromeDriver
clicks the button, collects and saves the cookie data, clears browser cookies and cache
between the subsequent clicks.



Chapter 4

Evaluation

The system described in the previous chapter was developed and tested using the list of
the top 1,000 websites, in fact, all assumptions and generalisations about the cookie di-
alogs and web design are based on the patterns seen within this subset of web pages and
my previous knowledge. In addition, the implementation process included some man-
ual tagging, verification and dialog HTML structure analysis, as a result, the system
was improved to achieve greater efficiency, accuracy and a higher level of automation.
However, this suggests that the methods for cookie dialog and button detection might
be biased towards the top 1,000 websites, therefore, to evaluate the system it was tested
on a subset of 100 websites (list included in Appendix B) randomly selected from the
set of top 1 million domains.

The system failed to open 16 websites and 2 of these failures were detected manually
since the websites were blocked by the network firewall which was not one of the
expected failure conditions.

4.1 Cookie Dialog Detection

System found 25 cookie dialog elements out of 25 present, not including one false pos-
itive element. The number of possible cookie dialog elements is 25% lower compared
to the dialog elements found with no dialog text verification, this illustrates how simple
textual analysis can help eliminate a fraction of false positives. In addition, 6 cookie
dialogs were foreign and passed the text verification. Further, all websites where no
dialog was found, do indeed not display a dialog.

On average, system found 2 possible cookie dialog elements per website. Depend-
ing on whether the system operates in fully automated mode or not, the decision on
which of these elements is considered to be the cookie dialog differs. Therefore, it is
important to evaluate the performance for each mode separately.

25
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4.1.1 Fully-automated mode

As mentioned in the previous chapter, in fully automated mode the first element found
is assumed to be the dialog. This is indeed true for 91.7% of the crawled websites
and the two exceptions were elements that include the contents of of the dialog but are
larger than the actual dialog. However, such errors could be disregarded if the tool is
used for a purpose where the exact size of the dialog is insignificant. Further, the tool
detected one non-dialog element, in addition, the system detected a dialog on surf.nl
that disappears in less than 30 seconds after loading the website hence making it impos-
sible to perform the dialog interactions in the Phase 2. However, in fully-automated
mode the system fails to identify false positives or cookie notices with atypical be-
haviour. Nevertheless, in fully-automated mode the system detected cookie dialogs
with 93.0% accuracy1.

4.1.2 Semi-automated mode

In semi-automated mode the user can confirm which element represents dialog best,
add a better tag manually or declare that there is no cookie dialog at all. This helped to
achieve 100.0% accuracy but required time and human interaction. Assuming the user
has prior experience with the screenshot verification tool and knowledge about finding
suitable CSS selectors it takes approximately 100 seconds to inspect all screenshots
and around 90 seconds to find a CSS selector for one cookie dialog, this includes
ChromeDriver’s website loading time which is artificially extended to make sure the
website is fully loaded. Since in this case there is only one website which needs manual
tagging, the semi-automated mode adds a cost of approximately 3 minutes.

4.2 Identifying interactive elements

The system successfully identified 92.8% of the interactive elements and more detailed
results are presented in Table 4.1. Performance of interactive element search was very
similar for both automated and semi-automated modes. The only difference is the
execution time since in fully-automated system explores a falsely identified dialog and
a dialog that is known to disappear shortly which approximately takes an extra 12
minutes.

Opt-in
Opt-in Opt-in pre-selected Opt-out Close Settings Privacy

necessary choice policy
found 24 1 0 2 4 17 16
total 24 1 0 2 4 20 18

Table 4.1: Number of successfully identified and the total number of buttons in each
category.

1accuracy = TrueNegatives+TruePositives
Success f ullyScrapedWebsites , since assumption of maximum one dialog per website holds,

#TruePositives≤ #WebsitesWhereDialogWasFound
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Results

This chapter discusses findings of this study and the discussion is split into two parts,
namely analysis of cookie dialogs and analysis of cookie setting behaviour.

All experiments were performed on the 15-16th of March 2021 using the tool described
in Chapter 3 inspecting the list of top 1,000 websites of 2020. The program success-
fully crawled 907 websites and the following results and analysis are presented with
respect to this subset. Since cookie setting behaviour, cookie dialogs and their contents
vary depending on the location, to get consistent results data was collected using UK
based VPN proxy.

5.1 Cookie dialog analysis

I have found that 54.3% of the successfully crawled websites displayed a cookie dialog.
The automated tool performed identification with 98% accuracy, which increases to
99.9% after identifying erroneous website connections using the manual verification
step. I consider cookie dialog to be content blocking if it is located in the center of
the page, these include pop-up windows and cookie-walls. Some dialogs located at
the top or the bottom of the page can also be content blocking since other website’s
clickable elements are disabled until the user interacts with the cookie dialog, however,
in this study, the classification is based on dialogs location hence such cases are not
considered. I have found that 194 out of 490, or 39.6% of the detected cookie dialogs
are content blocking hence the user is required to acknowledge the use of cookies
and set cookie preferences before accessing the contents of the web page. This figure
is significantly higher compared to the cookie dialog analysis presented in the study
done by Utz et al. [33] where only 3% of 1,000 notices collected in 2018 were content
blocking, however, it is likely that the cookie notices have changed since more time
after GDPR has passed.

The Table 5.1 presents the number of dialogs which contain buttons of different cate-
gories identified in Section 3.4.4.1. 88.6% of the dialogs display some sort of opt-in
button and only 10.8% contain an opt-out button. In addition, 47.0% of the cookie
dialogs displaying both these options highlight the opt-in button hence nudging the

27
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user to give consent (see Figure A.6). 10.2% of dialogs do not have any of the cookie
management or consent options, however the majority of these no-option dialogs do
contain a close button, again comparing with the findings by Utz et al. [33] where
27.8% of consent notices do not give users any option on the first page of the dialog.
In addition, in 12.5% of the websites the cookie dialog reappears after clicking a close
button and refreshing the page.

Further, 64.3% of the cookie dialogs contain a settings button allowing the user to
set their cookie preferences, however, 66.3% of such dialogs are nudging the user to
opt-in rather than click settings or opt-out buttons. Comparing the options available
in content blocking versus non-blocking cookie dialogs, it can be seen that 92.3% of
blocking dialogs display a cookie settings button whereas only 50% of non-blocking
have this option. In addition, 87.9% of cookie dialogs classified as confirmation only
(see Figure A.4) are non-blocking dialogs.

Dialogs Opt-in
containing Opt-in Opt-in pre-selected Opt-out Close Settings Privacy

button necessary choice policy
Blocking 179 2 8 26 18 167 143

Non- 252 3 0 27 78 148 224
blocking

All 431 5 8 53 96 315 367

Table 5.1: Number of dialogs containing buttons of different categories, namely Opt-
in, Opt-in necessary, Opt-in preselected choice, Opt-out, Close, Settings and Privacy
policy. The statistics are presented for the total of 490 cookie dialogs, where 194 dialogs
are content blocking.

5.2 Cookie setting behaviour

This section discusses cookie setting behaviour of crawled websites. Analysis is split
into further sections, namely cookie setting behaviour upon first loading the website
and after interacting with the cookie consent options displayed on the first page of the
dialog.

5.2.1 ID-like cookies

To have a better understanding which cookies could potentially be used for tracking,
I needed to determine which cookies could be used as unique identifiers. There is no
comprehensive database describing the purpose of each cookie, however, other studies
suggest different approaches to identify potentially ID-like cookies that have a higher
likelihood to be used for tracking. Sanchez-Rola et al. [29] distinguishes ID-like
cookies by using a password strength evaluation algorithm called zxcvbn to deter-
mine whether the user could be identified among 1 billion internet users and checking
whether the cookie is set by a known analytics or marketing domain. Other studies
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[16][15] suggest a different approach, where ID-like cookie is required to have a reten-
tion period of at least 90 days, in addition to having a high-entropy value. Similarly,
Gunes et al. [1] filter out cookies that expire within a month when detecting ID-like
cookies.

My implementation of distinguishing ID-like cookies is based on the methods de-
scribed above. I have considered cookies that have a life time of at least 30 days.
The reason I have chosen a shorter period is two-fold. First, looking at the distribu-
tion of cookie retention periods under three months I identified distinct peaks at 30
and 90 days both of which appear relevant for this purpose. Although a longer period
allows to build more comprehensive user profile, 30 days might be sufficient to track
and exploit user’s browsing behaviour for marketing purposes since the ad targeting
data is often sold close to real-time. Second, I have observed cookies set by advertis-
ing and analytics service providers, such as tapad.com, adform.com and neustar.com,
that have retention periods of 30 days. After filtering cookies by the expiration date,
I have looked at the substrings comprising the cookie value, similarly to the meth-
ods described in other studies [15][1]. I extracted the subvalues separated by the list
of delimiters, namely : , = , . , % , | and considered a cookie to be ID-like if
the 8 ≤ lenght(subvalue) and the subvalue is hard to guess according to the zxcvbn1

score. I considered the scores equal or greater than 3 which is equivalent to at least
100 million guesses required to guess a password.

Not all ID-like cookies are profiling cookies recording identifiable user’s behaviour.
To illustrate, some analytics cookies are ID-like since each user is given a unique ID,
however, the data collected is anonymous. For instance, Google Analytics first-party
cookie _ga2 assigns a user ID that is non-personally identifiable. In addition, ID-
like cookies may be used to store user’s cookie management preferences, for example,
CookieConsent3 cookie set by Consent Management Provider Cookiebot stores user’s
consent preference. Although it assigns an identifiable user ID, this cookie records
user’s cookie preferences rather than tracks their behaviour online.

5.2.2 Cookies set upon first visit

Cookie collection upon loading the website suggests that 95.8% of the websites set at
least one cookie prior to any interaction with the web page and 91.6% websites set at
least one cookie having 1 year or longer retention period. Figure 5.1 shows that the
vast majority of the websites set at least one cookie in each of the following categories:
persistent, first-party and ID-like. More detailed statistical information is presented in
Table 5.2. It can be seen that on average websites set 22 cookies and the maximum
number of cookies set is almost 10 times greater. In addition, on average a website sets
more third-party than first-party cookies, and stores 19.1 persistent and 10.8 ID-like
cookies.

To determine whether the websites that do not display a cookie dialog set more cookies
and hence are the underlying cause of high values of measures outlined in Table 5.2,

1zxcvbn: a realistic password estimator. URL: https://pypi.org/project/zxcvbn/.
2Google Analytics. URL: https://developers.google.com/analytics/.
3Cookie Declaration. URL: https://www.cookiebot.com/en/cookie-declaration/.

https://pypi.org/project/zxcvbn/
https://developers.google.com/analytics/
https://www.cookiebot.com/en/cookie-declaration/
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Figure 5.1: Number of websites that set at least one cookie prior to any interaction with
the web page.

cookie mean median mode max standard deviation
any 22.1 12 5 206 28.8

persistent 19.1 9 2 195 27.1
third-party 11.3 2 0 176 23.4
first-party 10.7 7 0 69 10.1

ID-like 10.8 5 1 117 16.1

Table 5.2: Statistical measurements on cookies set before any interaction with a cookie
dialog. The data is collected from 907 successfully crawled websites.

I split the subset and compare distributions of the number of cookies set by websites
that do and do not display a cookie dialog. This is based on a hypothesis, that a
website displaying a cookie dialog is following the regulation guidelines, therefore, it
is more likely to conform to the regulation with regards to cookie setting behaviour
hence set less cookies upon loading the website. The distributions of the number of
cookies set upon loading the website are presented in Figure 5.2. By performing a
t-test between websites that do and do not display a cookie dialog I did not observe a
statistically significant difference between the means of these two groups, however, the
variance of no-dialog distribution is approximately 44% greater. In fact, if the subsets
are split further by the cookie type, t-test results are similar for persistent, third-party
and ID-like cookies. However, there is a statistically significant difference between
the number of first-party cookies set by websites that do and do not display a cookie
dialog (p < 0.009) with websites displaying a cookie dialog having a higher mean.
Combining statistical measures with the cookie distribution demonstrated in Figure
5.2, I conclude that websites containing cookie dialogs set more first-party cookies
upon loading the web page. However, there is no statistical evidence that this holds for
other types of cookies.
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Figure 5.2: Distribution of cookies set prior to any interaction with the websites display-
ing and not displaying cookie dialogs. Outliers are not presented and the line inside the
widest boxes denotes the median of each distribution.

The Figure 5.3 presents the top 20 trackers that set at least one ID-like cookie be-
fore any interaction with the cookie notice. I identify top cross-site tracker companies
by inspecting the most common cookie name-domain pairs among ID-like third-party
cookies and confirm that the cookie domains corresponds to a known tracker identified
by WhoTracksMe4 or DuckDuckGo Tracker Radar5. As can be seen, DoubleClick
is the most prevalent tracker, setting cookies on 25.7% of crawled websites. In addi-
tion, most trackers store cookies on an approximately equal number of websites that
do display and websites that do not display cookie dialogs.

4WhoTracksMee. URL: https://whotracks.me/.
5DuckDuckGo Tracker Radar. URL: https://github.com/duckduckgo/tracker-radar/.

https://whotracks.me/
https://github.com/duckduckgo/tracker-radar/
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Figure 5.3: Top 20 cross-site trackers that set at least one ID-like cookie upon loading.
Presented data corresponds to 907 successfully crawled websites.

5.2.3 Cookies set after dialog interactions

This section discusses cookie setting behaviour in more detail, especially how this
behaviour changes after user interacts with the options displayed within cookie dialog.

In Phase 2 system the failed to find a cookie dialog on one website due to Capthca
test. In addition, three cookie dialogs required additional interactions before clicking
any buttons, therefore there are no data on cookie setting behaviour after interactions
for these three websites. Thus, further discussion considers the subset of 486 websites
displaying a cookie dialog which the system managed to successfully engage with.

Figure 5.4 presents how the average number and the median of cookies changes after
clicking different dialog buttons. As can be seen, all dialog interactions result in an in-
creased number of cookies and on average clicking opt-in or opt-in necessary results in
the highest amount of cookies. The subset of cookies set after clicking opt-in necessary
button have the highest median, in addition, this subgroup demonstrates the greatest
increase of median compared to other buttons. On the other hand, only 1% of the
crawled websites display a cookie dialog with an opt-in necessary button hence there
is not enough data to draw conclusions about cookie setting behaviour after clicking
opt-in necessary and compare it with the behaviour of other button types. In this spe-
cific data set, it was found that opt-in necessary button is always accompanied with an
opt-in button. When only this small cookie dialog subset is considered it can be seen
that on average clicking opt-in necessary button results in significantly lower amount
of cookies than clicking opt-in (see Figure 5.5).

As presented in Figure 5.4, clicking opt-out button does not remove all cookies that
were set upon loading the website, this is expected since some cookies are necessary
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Figure 5.4: Mean and median of the number of cookies set before and after clicking
button in each of the following button category: Opt-in, Opt-in necessary, Opt-in pre-
selected, Opt-out and Close.

for a website to operate. However, the option to opt-out or reject cookies semanti-
cally implies removal of cookies or at least no added cookies, therefore I inspect the
cookie setting behaviour in a little more detail, more specifically I was interested how
clicking the opt-out button affected the number of cookies set in each subgroup and
these findings are presented in Table 5.3. As can be seen, on average websites do set
additional cookies of every type and the least difference is in the number of ID-like
cookies. Comparing modes, medians and means suggests that the cookie distributions
remain positively skewed and the mode of third-party, first-party and ID-like cookies
does not change, however the overall maximum number of cookies doubles.

By clicking the close button the user is acknowledging the presence of the cookie con-
sent notice, however, the meaning of close button is ambiguous since it does not imply
giving or refusing consent. It can be seen in Figure 5.4 that the mean and the median
of cookies set after the click increases, yet the difference is smaller compared to that
of opt-in. The number of dialogs containing the close button is far smaller than the
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Figure 5.5: The average number of cookies before and after clicking Opt-in and Opt-in
necessary buttons.

standard
mean median mode max deviation

cookie prior after prior after prior after prior after prior after
type
any 17.7 24.8 8.5 12.0 3 4 81 167 20.0 32.6

persistent 15.4 21.7 8.0 11.0 2 1, 3 80 137 17.9 21.7
and 6

third-party 8.4 13.6 2.0 2.0 0 0 78 128 15.1 13.6
first-party 9.3 11.2 6.0 8.5 0 0 36 39 9.5 11.2

ID-like 8.5 10.1 4.0 4.5 1 1 49 58 10.9 13.5

Table 5.3: Statistical measurements on cookies set before and after clicking an Opt-out
button. Cookie data before the click is adjusted to only span websites that do display
an Opt-out button in the cookie dialog.

number containing the opt-in button hence simply comparing changes in the mean and
the median is not sufficient to state that these two buttons result in different cookie
setting behaviour. One way to reveal what close button implies with regards to user’s
consent is to compare post-click cookie distribution with post-click distributions of
opt-in and opt-out buttons. T-test between cookies set after clicking close and after
clicking opt-in reveal statistically significant difference (p < 109) with cookie distribu-
tion after opting-in having the higher mean. Similar results were produced for different
types of cookies with the exception of first-party cookies set after closing the dialog
and after opting-in where no significant statistical difference was observed. Similarly,
a t-test between cookies set after clicking close and after opting-out reveal statistically
significant difference (p = 0.04) with post-click close distribution having the higher
mean. However, by performing a t-test between third-party cookies set after closing
the dialog and after opting-out I did not observe a statistically significant difference be-
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tween the means of these distributions. Figure 5.6 demonstrates the discussed cookie
distributions. It can be concluded, that clicking close button results in a cookie setting
distribution different from opt-in and opt-out, however, in this dataset the number of
cookies saved after clicking close falls somewhere in between opt-out and opt-in.

Figure 5.6: Distributions of cookies set after clicking Opt-in, Opt-out and Close button.
Since the data on other button types is insufficient, Opt-in necessary and Opt-in pre-
selected are excluded.

The Figure 5.7 presents the top 20 trackers identified after clicking opt-in button. As
can be seen, for the top 20 trackers the number of websites where the tracker was
identified after opting-in increased and on average is 3.7 times greater than pre-click.
Comparing to the trackers found upon loading (see Figure 5.3), DoubleClick, Face-
book and Adobe remain the most prevalent trackers for this dataset. Similarly, Dou-
bleClick is the most prevalent tracker after clicking opt-out and close buttons, where it
was found on 23.1% and 51.2% crawled websites respectively (see Figure 5.8). Google
(the owner of DoubleClick) and Facebook were also identified as the most prevalent
trackers in studies carried out by Roesner et al. [28], Karaj et al. [21] and Englehardt
et. al [15], despite their measurements including a wider range of trackers, namely
within-site trackers and trackers using tracking technologies beyond cookies.

The Figure 5.8 presents the top 20 trackers found after opting-out and after clicking
close. As can be seen, the number of websites where the tracker was found increased
for 15 out of 20 top trackers after refusing consent and for all top 20 trackers after
closing the dialog. Moreover, approximately half of the most prevalent tracker ob-
served after closing the dialog or refusing consent were not included in the list of the
top 20 most common trackers upon loading or opting-in. However, the subset of the
cookie notices displaying an opt-out or close button is far smaller compared to those
containing an opt-in button, in addition, the overlaps between these subsets are limited.
Therefore, it can not be concluded that the websites displaying the dialogs with opt-out
or close buttons employ different trackers from those displaying the dialogs containing
an opt-in option.
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Figure 5.7: Top 20 cross-site trackers that set at least on ID-like cookie when clicking
opt-in button. Presented data corresponds to 426 websites that display a cookie dialog
with an opt-in button and the system managed to successfully interact with. The dark
blue line indicates the number of websites within this subset containing the tracker
before the click.
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(a) Trackers after opting-out. Data presented for 52 websites.

(b) Trackers after closing the dialog. Data presented for 96 websites.

Figure 5.8: Top 20 cross-site trackers that set at least on ID-like cookie when clicking
opt-out (a) and close (b) buttons. Data is presented with respect to the number web-
sites that display a cookie dialog with the specific button and the system managed to
successfully interact with. The dark blue line indicates the number of websites within
this subset containing the tracker before the click.
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Conclusion

In this paper, I have analysed cookie consent options and the cookie setting behavior
resulting from the interactions with the cookie notices. The main contribution of this
study is the automated web crawler capable of finding cookie dialogs, identifying and
interacting with the consent options displayed within the first page of the dialog, and
collecting cookies. For a random subset of domains, the crawler is expected to identify
the cookie notices with an accuracy of around 93.0% however, higher accuracy could
be achieved if capturing the exact size of the cookie notice is not important.

Using the designed tool I performed an automated crawl on the top 1,000 most visited
websites in 2020. I have found that 91.7% of successfully crawled websites set at least
one ID-like cookie upon loading yet only 54.3% of the websites displayed a cookie
notice. Further, any interaction with the cookie notice usually results in an increased
number of cookies and often the design of the cookie notices nudges the user to give
consent either by highlighting the opt-in button, or not giving an easy way to refuse
consent by not including the opt-out button or possibly hiding this option within the
settings page.

In general, some of the observed cookie setting behavior indicates possible violations
of the GDPR and ePD. Many websites set ID-like or cross-site tracker cookies without
informing the user about the use of tracking technologies or prior to the visitor giving
or after refusing consent, however, many of these observations fall within the grey
area of the legislation since it is the company’s responsibility to decide whether certain
cookies are strictly necessary for their website to operate.

Since the number of dialogs with an opt-in button is significantly greater compared to
those containing other buttons that the system interacted with, the direct comparison
between cookie setting behaviors is not completely straightforward. Further, the under-
lying behavior depends not only on the option the user chooses but also on the options
available within the cookie notice. Therefore, it would be better to split the cookie
notices into categories, namely, no-option, confirmation, binary, etc. and compare the
cookie setting behavior based on the cookie dialog type in combination with the dialog
interactions. However, as presented in Section 5.1, some of these cookie notice types
are more common than others hence comprehensive analysis would require crawling a

38
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much larger set of domains.

The implemented tool lays the groundwork for future research of cookie setting be-
havior resulting from cookie notice interactions. However, cookie dialog detection in
the Phase 1 has proven to be costly mainly due to a large amount of global CSS selec-
tors. Iterating through a long list is computationally expensive and more importantly, it
makes the system non-scalable to larger data sets. Both CSS selector lists used in this
study are community managed and there seems to be a lack of maintenance, especially
when it comes to deleting selectors that are no longer relevant hence the lists continue
growing as websites change leaving a large number of redundant CSS selectors. In
fact, less than 1% of the global selectors was used to identify cookie notices in this
study. This suggests, that the cookie detection method could be optimised by pruning
the global CSS selector list based on the selectors identifying cookie dialogs in the
top 1,000 websites. Further developments could include automating the inspection of
the subsequent pages of the dialog, namely the settings page which often includes the
opt-out button or at least an option to object to some cookies. Moreover, the tool could
be extended to identify the tracker companies setting first-party cookies, however, this
would require inspecting HTTP requests to identify the domain of the cookie’s origin.
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Appendix A

Cookie Dialog Examples

A.1 Dialogs

This section includes some example cookie dialogs.

Figure A.1: Cookie dialog displaying cookie management options where the choices
are pre-selected hence Save & Exit button is classified as Opt-in pre-selected. Source:
webmd.com

43



Appendix A. Cookie Dialog Examples 44

Figure A.2: Cookie dialog with Opt-in and Opt-in necessary buttons. Source:
docker.com

Figure A.3: Cookie dialog with no consent or cookie management options available
hence it is considered to be no-option cookie dialog. Source: edx.org

Figure A.4: Cookie dialog where the only consent option available is to Opt-in hence
this is considered to be confirmation cookie dialog. Source: asos.com

Figure A.5: Binary cookie dialog displaying both Opt-in and Opt-out options. Source:
reddit.com

Figure A.6: Cookie dialog with both Opt-in and Opt-out options available. Allow cookie
button has bright yellow color compared to Decline button which is presented in the sim-
ilar style to other textual content of the dialog. The design of the cookie dialog highlights
the Opt-in button hence nudging the user to consent. Source: rubiconproject.com
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Figure A.7: Two different cookie dialogs displayed on the same website using different
connection endpoints. Cookie dialog on the left is displayed on google.com connecting
from Lithuania, whereas the one on the right is displayed when connecting over the UK
based VPN. Source: google.com

A.2 Non-dialog Elements

This section presents examples of pop-up windows and banners that are not considered
to be cookie dialogs. For explanation refer to the title of the figure.

Figure A.8: Cookie Settings button (bottom-left) which opens a cookie dialog when
clicked. Source: cnet.com
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Figure A.9: Use of cookies mentioned in the footer of the web page. It is not interactive
and in most cases not noticeable to a user. Source: sciencedirect.com

Figure A.10: Banner informs in changes in Privacy and Data Policy. Although, policy
itself is likely to include information about the use of cookies, it is not explicitly stated.
Source: mega.nz

Figure A.11: Pop-up window mentioning the use of cookies, however, the main con-
tents, including the title and the text inside the enter button, are focused on the fact that
the website contains age restricted content. Source: xnxx.com
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List of evaluation domains

1. us2.net

2. mitech-ndt.com

3. bloodpressureuk.org

4. karnoenergy.com

5. motel-one.com

6. entrata.com

7. ss-ic.org.cn

8. hotesib.ru

9. unrxhwb.com

10. iheartcraftythings.com

11. tv-osaka.co.jp

12. qhnmdb.com

13. 01717.cn

14. hechingerreport.org

15. nyrr.org

16. zahav.ru

17. britishherald.com

18. cliffsnotes.com

19. caresoft.vn

20. btinternet.com

21. pymnts.com

22. kodakgallery.com

23. 51xuediannao.com

24. sverhestestvennoe.club

25. revealnews.org

26. bloter.net

27. fmhds.gov.ng

28. fortunegreece.com

29. fast2sms.com

30. newmatilda.com

31. knightfrank.co.uk

32. pengfu.com

33. pz.gov.pl

34. pixelation.org

35. quintly.com

36. eetop.cn

37. freeola.com

38. ccgp-shandong.gov.cn

39. samsungcloudsolution.com

40. wittenberg.edu

41. essay4you.net

42. reclaimthenet.org
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43. porngem.com

44. 660citynews.com

45. leiphone.com

46. sportsgrid.com

47. diariodemallorca.es

48. sikporn.com

49. trackivation.com

50. elmastudio.de

51. technipfmc.com

52. hanjiecheng.com

53. fdcp.co.jp

54. vaporivape.com

55. bitsdujour.com

56. harlemglobetrotters.com

57. streamguys1.com

58. wirtualnemedia.pl

59. xhamster32.com

60. finra.org

61. codesandbox.io
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