

1

Usability of System Configuration Languages:

Confusion caused by Ordering

Adele Mikoliunaite

Master of Science

Cognitive Science

School of Informatics

University of Edinburgh

2016

2

3

Abstract

In recent years the demand for IT services has outgrown the supply of skilled system

administrators. Such changes resulted in the system administrator group shifting from

a predominantly experienced and trained pool of resources to include novice and self-

taught administrators.

Setting up services, installing software and troubleshooting in a constantly high

pressure environment while lacking extensive knowledge of the system and having to

use tools designed for the experienced only, can be not just challenging for a system

administrator, but also expensive for the company when incidents arise due to the

combination of these new factors. Due to massive outages in large companies across

the world, caused by configuration errors, an increasing amount of research is being

conducted, aiming to prevent system administrator mistakes. Such mistakes are caused

by misinterpretation or lack of knowledge, and since declarative configuration

languages, are often thought of as more complex to get used to for novice

administrators, we have studied three of them – Puppet, SmartFrog and L3.

To assist the research we have built a survey to test intuitive judgement and preferred

interpretations of such features as referencing, inheritance, scope and ordering

presented in pseudo code. It is thought that order within declarative languages is not

important, however collected data shows that ordering, in fact, does matter in certain

contexts and especially when paired with other features such as inheritance or

referencing.

4

Acknowledgments

I would like to thank my supervisor Paul Anderson for proposing such an interesting

project, accepting me for it despite my lack of knowledge in the field and continuing

to guide me into the light throughout the lifespan of this project. I would also like to

thank my second supervisor Kami Vaniea for always finding time for me and my

questions in her very busy schedule and all the detailed comments that have taught me

a lot. I would like to thank Hamish Macleod for the discussion we had and friendly

help in navigating statistics. I would also like to thank Ken Barber, Jenny Mahmoudi,

Nigel Kersten, Tom Limoncelli, Eser Kandogan and Ski Kacorski for their positive

support and promoting our survey. I would also like to thank to everyone who

answered the survey.

5

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Adele Mikoliunaite)

6

7

Table of contents

ABSTRACT .. 3

ACKNOWLEDGMENTS .. 4

DECLARATION .. 5

TABLE OF CONTENTS .. 7

1. INTRODUCTION ... 9

1.1 CURRENT SOLUTIONS .. 11

1.2 OUR APPROACH .. 12

1.3 RESULTS... 14

1.4 STRUCTURE OF THE DISSERTATION ... 15

2. BACKGROUND ... 17

2.1. SYSTEM CONFIGURATION .. 17

2.1.1. Configuration management ... 17

2.1.2. Declarative approach to configuration management .. 20

2.1.3. Configuration languages .. 21

2.1.4. Order matters... 22

2.2. HUMAN FACTORS OF SYSTEM ADMINISTRATION ... 24

2.2.1. System administrators ... 24

2.2.2. Configuration errors ... 26

2.2.3. Human Error ... 27

2.2.4. Mental models ... 29

3. CONCEPT DEVELOPMENT ... 31

3.1. INHERITANCE .. 32

3.2. SCOPE ... 36

3.3. REFERENCING ... 37

3.4. ORDERING .. 39

3.4.1. Evaluation order ... 39

3.4.2. Lexical order ... 41

4. METHODOLOGY ... 43

4.1. CHOOSING THE METHOD ... 43

4.2. DESIGNING THE SURVEY .. 44

4.3. PILOT TEST ... 45

8

4.4. IMPLEMENTATION .. 46

4.5. DATA ANALYSIS .. 48

5. RESULTS ... 51

5.1 DATA DESCRIPTION ... 51

5.2 CONFIDENCE LEVELS .. 53

5.3 MENTAL MODELS OF CONCEPTS ... 55

5.4 CONFUSION OVER ORDERING .. 61

6. DISCUSSION ... 65

6.1 CONCLUSION ... 67

6.2 LIMITATIONS .. 68

6.3 FUTURE WORK ... 69

BIBLIOGRAPHY: .. 71

APPENDIX A ... 77

9

1. Introduction

In recent years, attention to configuration errors has increased vastly. This can be

directly attributed to the number of major system failures around the globe caused by

misconfigurations. In 2009, incorrect configuration brought down the entire .se

domain in Sweden (CircleID.com, 2009), which effectively stopped the Swedish

National Internet from working for an hour. In 2010 a configuration error took

Facebook down for 2.5 hours, resulting in the worst outage at Facebook in over four

years (Johnson, 2010). In 2012, the misconfiguration at Amazon rendered Netflix

unavailable on Christmas (The Aws Team, 2012). Since then, other large outages,

caused by misconfigurations, were experienced by Amazon (The Aws Team, 2011),

Microsoft (Miller, 2012; Sverdlik, 2014), Google (Brodkin, 2012; The Google Apps

Team, 2013), LinkedIn (Liang, 2013), and Home Box Office Inc (York. 2015). Such

configuration errors impact customers at various levels and cost companies not just the

income lost from sales, services and reputational damage, but also the time of

employees (Patterson, 2002). The results of misconfigurations can be irreversible,

especially if important data was lost.

In this work, system configuration, refers to the process of installing software

packages, and setting and managing system parameters, based on requirements (e.g.

increasing security, improving performance, allowing certain functions). System

configuration could be used for managing one computer to managing hundreds of

servers in large scale organizations and for operating large and complex systems across

multiple machines. In such situations, system configuration can be extremely complex,

consisting of thousands of parameters, interacting in various ways (Xu & Zhou, 2015).

Such complexity makes it extremely difficult to prevent, detect and troubleshoot

configuration errors.

Configuration error, here, refers to the unsatisfactory behaviour of the system, which

could be caused by misconfigurations (incorrect settings of the system). Configuration

errors may be divided in two types: system errors (e.g. corrupted data, software bugs)

and human errors – system administrator mistakes (Xu & Zhou, 2015). Some human

http://www.datacenterknowledge.com/archives/author/yevgeniy-sverdlik/

10

errors could be due to action slips (e.g. typos), like a missing dot, which was identified

as the root cause for the .se domain outage in Sweden (McNamara, 2009), mentioned

previously. Other human errors can be due to mistakes, which refer to misinterpretation

of the system. The configuration error study by Yin et al. (2011) showed that the

biggest part of misconfigurations (70.0% – 85.5%) were made up of configuration

parameter mistakes. They divided parameter mistakes into illegal and legal. Illegal

parameter mistakes are the setting of values that violate format, syntax or semantic

rules, while legal parameter mistakes are setting incorrect values, that do not violate

any rules but they do not deliver the performance intended by the user. The latter had

been found to be the case in up to 61% of mistakes within parameter configurations by

Yin et al (2011). Xu et al. (2016) discovered that contrary to expectation, more than

half of misconfigurations made by humans are a result of an administrator’s difficulties

in finding the right parameters and setting correct values, i.e. mistakes, not the action

slips.

The reason behind these mistakes could be a recent shift in the system administrators

group. System administrators used to be experienced professionals within their field,

but due to the rapid advance in IT services, the demand exceeded the supply. Today

the majority of system administrators enter the field without having received any

formal training. At best, system administrators have a degree in computer science or

are self-taught, since education or preparation in system configuration, specifically, is

not yet widely available (Border & Begnum, 2014). In addition, system administrators

are very different to the software developers or end users (typical computer users), in

a way that they do not have extensive understanding of controlling and debugging

systems, do not write code (and often cannot read it) and mostly depend on user

manuals, colleagues advice and Internet sources to perform configurations and

understand systems (Xu and Zhou, 2015). Thus, system administrators vary from

highly skilled and experienced professionals, in large organizations, to novice

administrators, lacking both skill and experience. In contrast most tools and user

manuals are created for people with some experience and knowledge, not keeping the

novice users in mind. Such a change in the group of users of these tools and such a

high rate of configuration errors indicates that it is time for tools to change accordingly

to accommodate the shift.

11

1.1 Current solutions

There have been many attempts to build various automated tools to help diagnose and

fix configuration errors. Keller, Pupadhyaya and Candea (2008) presented a tool

ConfErr to test how resilient to human errors software is. It was used to generate

human like configuration mistakes and test how systems are able to handle these errors.

It then produced a resilience profile, which could be used as a guide to improve the

software. The purpose of dynamic flow analysis tools, like ConfAid (Attariyan and

Flinn, 2010) was to find root causes of misconfigurations by monitoring causal

dependencies as the code executes and linking them to corresponding tokens in

configuration files. Static analysis tools, such as ConfDebugger (Dong, Ghanavati and

Andrzejak, 2013), were built to capture lexical and syntactic errors (slips) in code

without executing it. All of these and many other tools can successfully detect most

mistyped configuration and other human slips such as typos. However, in dealing with

human mistakes and misinterpretations automatic tools might not be the best approach

to utilise, as mistakes are normally legal values that conform to syntax rules but were

chosen incorrectly for the goal intended.

Due to the mentioned changes in system administrators group, Xu, Pandey and

Klemmer (2016) argued that their errors should be treated as Human-Computer

Interaction problem. In recent years various aspects of user experience (e.g. end-users)

have received a great deal of attention and investment from Industry, but system

administrators have been overlooked in this context (Oppenheimer, Ganapathi and

Patterson, 2003). It is easy to think of system administrators as the handymen of the

IT Industry, who know it all, but at the end of the day they are also users, who depend

highly on their tools. System administrators spend significant amounts of time using

various tools, which were often developed in an ad hoc manner for people with skill

and experience. They work under constant pressure managing hundreds of

configurations and troubleshooting issues with tools that do not support their needs.

They are required to collaborate successfully, keep their focus at all times and create

12

workarounds to compensate for the deficiency of the tools provided (Barret et al.,

2004), so that everyone else on a workstation can do their job. It would be unjust to

consider configuration errors outside of the context in which they appeared. The

underlying issue of misconfigurations, as argued Xu et al. (2013) might as well be the

system itself, as well as configuration design. Or as Norman (2013, p. 162) claimed:

“Most industrial accidents are caused by human error: estimates range

between 75 and 95 percent. How is it that so many people are so

incompetent? Answer: They aren’t. It’s a design problem.”

Nagaraja et al. (2004) created a validation technique to catch all the operator mistakes

in a virtual environment before making it visible to the system and users. Their

prototype was proved to find two thirds of the 42 mistakes they were testing it on. A

slightly different approach was taken by Xu et al. Arguing that rethinking and

redesigning configuration to prevent users’ confusion, next to auto-configuration is a

part of the ultimate solution against configuration errors, Xu et al. (2013) have created

a tool called SPEX to automatically infer configuration requirements from the source

code of the system in order to expose vulnerabilities and error-prone configuration

design.

1.2 Our approach

In order to prevent errors through design changes, it is first needed to understand what

exact issues the current design holds, what are the aspects that confuse users the most

and leads them to make mistakes. Xu, Pandey and Klemmer (2016) took a step in this

direction and suggested that in order to help system administrators we should start by

understanding their cognitive problems – which tasks are found to be difficult and

why? However, the underlying problem Xu, Pandey and Klemmer have not discussed

is that system administrators, especially novice, are not always aware of their

misinterpretation of system behaviour, especially if nothing results in an error

immediately. Therefore, they might not think that something was difficult or that they

had an issue, when in fact they did. Such constraints require different methods of

research to be applied.

13

Oppenheimer, Ganapathi and Patterson (2003) stressed the importance of a match

between the model of the system and the mental model system administrators form

about the system. Mental model in this study refers to an internal representation (in

human mind) of a system or a concept. Hrebec and Stiber, in 2001 tried to follow this

direction to discover what mental models system administrators had regarding the

systems they worked with. However, their survey was not successful as the number of

participants and the information they gathered did not provide much insight about the

mental models system administrators had. In particular, there was no data indicating

or at least hinting as to the structure or behaviour of the system. Instead, it explained

how difficult they thought the systems were and revealed how they were approaching

issues in the work place (e.g. by experimenting, asking for help of someone you trust,

etc.).

In this study we focus on custom configuration languages of such declarative

configuration frameworks as Puppet, SmartFrog and L3. Configuration language

refers to a configuration specification written in a higher level and declarative

approach means defining configuration in terms of what needs to be done, as opposed

to how, used in imperative approaches. Declarative configuration frameworks were

chosen due to their growing popularity and complexity. In addition, it is likely that

declarative tools are more difficult for novice users to get used to, since most of

programming and scripting languages are imperative. Also, since it is often stated that

order does not matter in declarative languages, we were interested to see whether it is

a real feature that system administrators are also aware of, or a source of confusion

instead. Finally, our checks against existing research have not come across previously

conducted analysis of usability of configuration languages. Therefore, we chose to

concentrate on ordering within the mentioned configuration languages as a

manageable problem.

The purpose of this study is to research the confusion, intuitive judgement and

expectations of the actual and potential configuration language user, in order to gain

better understanding of the usability of configuration languages, impact of ordering

and how it relates to configuration mistakes. A survey was conducted to find out what

expectations towards configuration language features such as referencing, inheritance,

14

scoping and ordering system administrators have and on what mental models they tend

to rely on, when presented with unfamiliar pseudo configuration examples. The

underlying goal and our main objective is to detect the weak spots within these features

that cause misinterpretation and, therefore, mistakes. By uncovering these weak

aspects within configuration languages we hope to help to improve existing and create

better configuration languages, suitable to use by both experienced and novice system

administrators.

Qualitative data analysis was used to study the underlying models of chosen

declarative frameworks. The particularly confusing and self-contained feature –

referencing (including inheritance and scoping) was chosen to explore in more depth.

Descriptive and exploratory analysis was used to process the gathered data.

1.3 Results

The survey has been completed by 384 participants. Majority of the participants were

from IT related background and had experience working with configuration languages.

Many were familiar with configuration tools such as Puppet and Ansible. Participants

had high confidence levels and good skills, as measured by the survey.

Survey results revealed that the highest rates of confusion lies within the inheritance

and ordering. On the surface it appeared that most participants were familiar with the

inheritance, but occasionally they had picked answers that did not fit into the same

model of inheritance that they followed on in different questions. Multilevel

inheritance was supported in two different ways by more than half participants,

although it also had a group of people who preferred multilevel inheritance not to be

allowed, as well as a group of people that did not know how they would expect it to

behave.

Nearly all participants supported dynamic scope for classes, however a clear division

between static and dynamic variable scoping could be seen. In relation to this, future

referencing was only partially supported by half of participants, while slightly smaller

group preferred thorough dynamic approach with future references supported for both

variables and classes.

15

1.4 Structure of the dissertation

The structure of the dissertation is as follows:

Chapter 2 explains declarative approach to configuration management, introduces

configuration languages, discusses why misconfiguration happen and presents Human

centred approach in targeting misconfigurations.

Chapter 3 presents work undertaken, including concept and survey development,

explains chosen concepts in detail, and discusses final design of the survey and lessons

learned through testing.

Chapter 4 presents the results of the survey, describes the qualitative data and discusses

most significant findings.

Chapter 5 concludes the work, discusses findings and limitations, and presents

suggestions for future work.

16

17

2. Background

This chapter explains what is system configuration, who are system administrators,

why do they use configuration languages and why usability of it matters. The first part

of the chapter focuses on system configuration used in IT management. It explains the

difference between imperative and declarative approaches to system configuration and

introduces configuration languages. Advantages and disadvantages of declarative

configuration languages are discussed and reasons behind confusion over ordering are

reviewed. The second part focuses on human factors of system administration. System

administrators experience, workspace and tools are discussed as well as the

requirements they are expected to meet.

2.1. System configuration

2.1.1. Configuration management

Configuration management is used in IT service management, military, civil

engineering and industrial engineering. Since the use in each field is different, this

paper only discusses configuration management in the context of IT service

management. In the context of large sites, for example, for thousands upon thousands

of Google developer workstations, configuration management would be used to make

sure the workstations are functioning well and accommodate developer’s needs.

Meaning, their computers are running smoothly, allow needed access and support

required software packages. The network needs to be up at all times, avoiding

disruption of workflow and losing any data. For the amount of emails generated in

such large sites, mail servers have to be well managed as well. Configuration

management is used for such purposes amongst others.

The term configuration derives from Latin com- “together” (“with”) and figurare, “to

form”, which together means “to form from or after”. Another meaning is “a relative

arrangement of parts or elements”, thus configuration management means managing

an arrangement of parts or elements (Mette and Hass, 2002). Configuration

management has many definitions, this study uses one by Mette and Hass (2002, p. 3):

18

Configuration management is unique identification, controlled storage,

change control, and status reporting of selected intermediate work

products, product components, and products during the life of a system.

Anderson (2006) described a few types of configuration. System configuration refers

to installing software packages on a large number of machines and specifying their

functionality based on requirements. It also includes reconfiguration if and when

needed. For example, when there is a change in environment, specifications or when

something breaks. Hardware configuration refers to building overall systems from

hardware parts, based on requirements. Software configuration management involves

putting modules together to construct complete software applications. Network

configuration management refers to configuration of routers, switches and other

network devices. Distributed application configuration refers to creating single

distributed applications, which runs on multiple computers within the network, by

configuring and deploying processes onto different computer nodes. Per-user

configuration involves configuring application settings according to individual

requirements of the user.

Figure 1. The basic task of system configuration (Anderson, 2006, Figure 1).

System configuration management involves features and tasks from the other

mentioned configurations. Figure 1 presents a visualisation of a basic task.

19

Generally, system configuration involves dealing with a lot of specifications, because

all the machines in the site are unlikely to be identical, in terms of what software they

contain and what accesses are allowed. Configuration specifications define the

required behaviour of machines and services in the particular system. They come in

the form of settings or parameters, which are stored in configuration files. A single

configuration file can have thousands, or hundreds of thousands of different

parameters. Managing relationships of the machines across the site requires good

knowledge of all configurable entities involved. For example, providing Web services

would involve configuring not only the Web server, but also DNS and firewall

(Anderson, 2006). Large sites usually have separate departments for each type of

configuration (e.g. network, mail, firewall, etc.) and many system administrators

responsible for configuring different aspects. Configuration languages are used for

this purpose, as they are intended to help compose different aspects of the system. In

the mentioned example, different people would be involved in configuring the Web

server and firewall, and as a result, overall configuration would be composed from

different aspects, configured by different people. While in smaller sites the number of

people would make it possible to discuss things in person, in large sites this not an

option. However, collaboration is a big part of the process. Even though each person

involved is expected to have enough skill and knowledge to make their decisions

considering the whole picture, the whole picture often is simply too big. Therefore,

configuration stands on successful task distribution and collaboration. Each aspect of

configuration can have an impact to many configuration files, as well as each

configuration file being dependent on many aspects. On top of that, different

configuration languages might be used to configure different parts of the system. Such

intertwined dependencies are prone to error and especially complex to detangle in the

search of the root cause (Anderson, 2006).

Configuration management used to be all manual, but these days there are many tools

that help to automate the process to some extent. Some of the well-known tools include

CFEngine, Puppet, Salt, Ansible, Chef. They are often written in common scripting

languages, such as shell, Python, Ruby or Perl.

20

2.1.2. Declarative approach to configuration management

There are several approaches to configuration management, but the two most popular

are imperative (also called procedural) and declarative. Following the imperative

approach, each step that needs to be taken to reach the end goal has to be defined,

including all the alternative steps. Essentially, it is a definition of How to do things,

and it is up to the person writing the script to decide on that. Following the declarative

approach, the desired final state of the machine is defined, which is essentially the

instruction on What to do, not how. The tool then computes what steps and in what

order these need to be taken to reach the end goal (i.e. How). These descriptions,

explaining what needs to be done at a higher level are called configuration languages

(discussed in the next section).

The difference between applications utilising each of these approaches may be seen in

Figure 2. Below, by Ford (2014). Both, imperative Shell code and declarative Puppet

code are aiming for the same final result, the only difference is how it is defined.

The Declarative approach might seem to produce easier and more concise code.

Indeed, it does have some benefits over the imperative approach. Ford (2014) claims

its repeatability and consistency to be two of the biggest advantages together with the

time saved on script writing. Anderson (2006) noted that it allows system

administrators to focus more on the end result without being confused over procedures.

Figure 2. Comparison between imperative and declarative configuration code (Ford, 2014).

21

It also allows the tools to run continuously monitoring the state and change it whenever

it does not match the desired state. In addition, it allows any conflicts to be detected

before applying configuration. However, it does present a learning curve for system

administrators, especially because they are mostly used to procedural

implementations.

2.1.3. Configuration languages

Configuration language refers to configuration specifications, written in a higher

level. It is like an abstract description of how systems should look like, it can also

include definitions of relationships between entities. Following a declarative approach,

configuration languages would contain specifications of what needs to be done, not

how. Such high level descriptions allows it to be reused for various goals across

different operating systems.

The main difference between configuration languages and other programming

languages is that configuration languages are descriptive (Weilli, Cheney and

Anderson, 2016). Most programming languages widely known today are procedural

(C, C++, C#, Java, Python, Ruby, Perl, MATLAB etc.), they use conditional

statements (e.g. if-else) and loops (e.g. for, while) in some form. These features make

it easier to define processes step by step. Declarative configuration languages, on the

other hand, define the end result of the process. Therefore, they use the same and

different features to define relationships between entities or specify order, where it

matters.

Most configuration tools sit in the range between imperative and declarative,

incorporating elements from both. Chef, for example, is at the imperative end of this

range, while Puppet is at the declarative end of this range. Imperative configuration

frameworks, such as Chef and Ansible usually use already existing scripting languages

like Ruby, Perl, Python and bash for their configurations. Even though there is an

example of general declarative programming language – Prolog (Anderson, 2006),

most declarative frameworks, such as Puppet, SmartFrog, L3 and LCFG have built

their own configuration languages (although Puppet is also available using Ruby DSL)

to match the requirements. Kanies (2012) argued that the main benefits of the Puppet

22

native configuration language is the simpler and more powerful code. Even though

declarative configuration languages follow the same approach, they were built with a

purpose to fit entirely different frameworks, therefore, they differ not only in syntax,

but also in some of the features.

Declarative configuration languages are mostly being developed in an ad hoc manner

by many people in many different places working on different aspects of it. This allows

for faster and more efficient development and improvement. However, as functionality

of the language grows, so does the complexity of it. Every new aspect introduced into

the whole will impact and be impacted by other aspects of it. As a result, many

relationships and dependencies will be formed between certain aspects of the language,

not all of which will be discovered through testing. Such hidden relationships might

also never cause any errors directly, instead, it might appear to work fine, but will

produce different results. An experienced and skilled user might discover such

dependencies (and will be aware of other ones) and will be able to use some creative

workarounds to make it work. While novice user might get overwhelmed with

confusion or will not even notice it until it generates an issue (misconfiguration) later

on.

2.1.4. Order matters

As mentioned in the previous section, one such confusion, caused by hidden

dependencies lies in ordering. It is often thought that in declarative languages order

does not matter. However, we found that in declarative languages order does tend to

matter in certain cases.

In declarative configuration languages there are a few types of order. Firstly, there is

lexical order, in which the configuration is written. In imperative language this order

is very important, since steps gets deployed following the specifications presented in

lexical order. In declarative languages, however, order is often stated as unimportant,

since the specifications do not necessarily get deployed in that particular order. Order

of evaluation is the order in which given specifications are applied. In imperative

languages both lexical and evaluation orders are mostly in line. In declarative

languages they are not aligned. Furthermore, the lexical order is said to be unimportant

23

and evaluation order is hidden and not in control of the user, as it is decided by the

tool/framework. Not knowing the order in which configuration gets evaluated might

be a useful feature as it protects users from focusing on elements other than those that

are essential. In contrast, it might not be as useful when looking for a root cause of

errors.

As mentioned, configuration languages define the desired state in declarative

approach, not the steps to get there (imperative approach). Therefore, the tool chooses

the best and most efficient order of execution to reach the desire state. The user is

unaware of evaluation order, which could potentially cause confusion and mistakes.

In addition, in some cases, different components need to be executed in the specific

order to produce required result, and mixing this order up can result in unexpected

outcome. Collard et al. (2015, p. 4) presents such example written in Puppet:

package{’golang-go’: ensure => present }

package{’perl’: ensure => absent}

The desired goal in this example is to install the Go compiler and remove Perl.

However, it is not obvious to the user which order will be computed as best by the

configuration management tool used and there is no way to find it out without actually

executing the code. In addition, the Go compiler is unexpectedly dependent on Perl.

Meaning that if Go is installed before removing Perl, once Perl gets removed, the Go

will be removed as well. In contrast, if Perl is removed first, the Go will be removed

with it, and when Go is installed, the Perl will be installed with it (Mikoliunaite, 2016).

Declarative configuration languages usually have certain features to allow for

definition of dependencies when needed. We discuss ordering in more detail in section

3.1.4.

24

2.2. Human factors of system administration

2.2.1. System administrators

System administrators (also called sysadmins) have many different titles such as

database administrator, web administrator, network administrator, storage

administrator, systems engineer, systems architect, infrastructure architect, system

security expert, systems operators, webmaster and other. Just as their titles, their roles

also differ. Large companies might have separate departments within their IT

department for database, web, network and other servers, while the system

administrator in a small company might be responsible for managing all of it. However

small or large, each company has at least one system administrator and it is this person

who sets up a network within the organization, installs and configures all the needed

hardware and software, performs audits for software and systems, applies operating

system updates and configuration changes, documents the configuration of the system

and ensures that all the services are up and running so that everyone else in the

company can do their job. In addition to that, system administrators are constantly

diagnosing and fixing all the reported issues, ranging from error message on

someone’s computer screen to complete server outages. Since the results of outages

are often irreversible and can mean not just loss of money, time and customer trust,

but also important data, the system administrator’s job is crucial to prevent such

incidents.

Due to a rapid increase in IT service delivery, the number of servers within companies

has accelerated and so has the demand for IT managers (Kandogan, Maglio, Haber and

Bailey, 2012). As a result, the costs of the human workforce has outgrown the cost of

technology (Bozman and Perry, 2010). These changes encouraged researchers to focus

on system administrators in order to find ways to reverse this trend. In addition, such

high demand of IT experts resulted in the system administrators group shifting from

highly skilled and experienced to include novice administrators (Xu and Zhou, 2015),

who at best were self-taught or holding a degree in the field of, or related to, computer

science, since education or training in system configuration, specifically, were not

widely available (Border & Begnum, 2014).

25

Since the work of system administrators is essential for any business and due to the

change in skill and experience, the need to prevent errors advanced. To understand

who system administrators are, what do they do, what problems do they face and what

can be done to improve their efficiency and reduce the risk of mistakes, several field

studies have been conducted (Barret et al., 2004; Velasquez, Weisband and Durcikova,

2008; Kandogan, Maglio, Haber and Bailey, 2012). Some focused on finding out what

tasks of sysadmins could be automated to reduce costs (Kandogan, Maglio, Haber and

Bailey, 2012). Others targeted tasks which system administrators found most difficult

and explored how they handled their own mistakes through usability studies (Nagaraja

et al., 2004). Surveys were used to find out whether the ways systems work matched

the system administrators’ mental model of it (Hebrec and Stiber, 2001). Barret et al.

(2004) conducted several field studies in large universities and enterprises. Through

observations, interviews, surveys and collecting artefacts (such as diaries and planning

documents) they proved that the tools used by system administrators were often not

aligned to their work.

One of the system administrator’s daily tasks is to configure applications, server

processes and operating systems files, which as mentioned previously, are a collection

of settings and parameters that describes the desired state of each. It might not appear

complex at first, but Ko et al. argued, that (2011, p. 7):

“Modern IT systems have hundreds or thousands of configuration

parameters that may interact in unexpected ways.”

Some applications have graphical interfaces and provide tools to design and modify

the syntax of their configuration files. Others may require design and modification of

files using a text editor. Skilled system administrators are required to know at least a

few scripting languages such as shell, powershell, Perl, Ruby or Python. However,

knowing a scripting language is very different from actually being a software

developer. Xu, Pandey and Klemmer (2016) compared user ratings on two Q & A

sites, both of which are parts of websites from Stack Exchange Network:

StackOverflow.com aimed for developers and Serverfault.com aimed for system

administrators. The users in each website are ranked based on their reputation and

activity on the sites. Meaning, if the person actively shares his knowledge and other

26

people find this helpful, the person will have a high score. The scores of the users, who

were registered at both sites were compared and it appeared that most users who had

high reputation in one of the sites, had low reputation on the other (Xu, Pandey &

Klemmer, 2016). Such results prove that indeed the skill and knowledge of system

administrator and developer differs significantly. System administrators vary from

highly skilled and experienced professionals, able to code in variety of scripting and

also programming languages to novice administrators, who do not know how to write

or read code. However, most user manuals are created for users with some experience

and knowledge, not keeping the novice users in mind.

2.2.2. Configuration errors

In 1986, Gray found that administrator (operator) error was the largest cause of failure

in deployed Tandem systems, making up to 42% of all failures. He found software

bugs to be only the second largest cause of all failures, making up to 25% (Grey, 1986).

The later published studies kept on delivering similar results.

In 2002, Patterson conducted two surveys to find that majority of downtime causes

were due to system operators (Patterson, 2002). In 2003, Oppenheimer, Ganapathi and

Patterson published a study on over 500 failures in three large Internet services: Online

(online service/Internet portal), Content (global content hosting service) and

ReadMostly (read-mostly internet service) and found operator errors to be the largest

cause in two of the three service. More than 50% and in one case nearly 100% of the

operator caused failures were configuration errors (Oppenheimer, Ganapathi,

Patterson, 2003). In addition, Oppenheimer, Ganapathi and Patterson (2003)

discovered that operator errors took more time to repair than other failures.

In 2004 Nagaraja et al. conducted 43 experiments with operators ranging from novice

to experienced. The results agreed with previous findings – configuration mistakes

were the most common, followed by incorrect software restarts (Nagaraja et al., 2004).

Differently from previous studies, Nagaraja et al. took a first step to study

configuration errors in the context. They have given tasks to 11 participants and then

have observed them completing it and handling their own mistakes. However, the

study conducted was very small with only 42 errors from 11 volunteer participants

observed and discussed.

27

Mahajan, Wetherall and Anderson (2002) did a quantitative study of Border Gateway

Protocol (BGP) misconfigurations. They focused on such configuration errors as slips

and mistakes. In their terms, slips referred to adverted errors whilst mistakes were

classified as design errors. They were expecting that most misconfigurations would

appear to be due to slips. Therefore Mahajan, Wetherall and Anderson (2002) were

surprise to find that mistakes, in particular poor understanding of router command

semantics, were the cause for most misconfigurations.

2.2.3. Human Error

Errors, made by people, are called human errors. Reason (2000) described two main

views of human error: person and system approach. The Person approach is mostly

directed at high risk occupations, such as surgeons, nurses, aesthetics, and pharmacists,

however, it could also apply to sysadmins. It considers acts like forgetfulness,

carelessness, inability to focus or lack of motivation to be the root causes of errors. In

contrast, system approach accepts human error as inevitable, no matter the skill or

organization. It views errors as consequences, not causes, of failed defences, and

encourages instead of trying to change human nature in making errors, to change the

systems and conditions people work in to accommodate for these errors (Reason,

2000).

The term human error itself incorrectly implies that it is solely human fault. However,

the context in which error happened is as important, especially since many times it

contains tight deadlines and limited resources (Ritter, Bacter and Churchill, 2014). As

mention previously in the section 2.2.1, system administrators often work in a highly

stressful environment, equipped with insufficient tools. The nature of their job requires

ability to multitask and give full focus at the same time. In addition, the quality of their

work depends not only on their skill and knowledge, but also on successful

collaboration with each other. For this reason, mistakes made in such context should

not be considered solely as the sysadmins fault. Rather, it is the whole series of faults

that resulted in an error, as Reason’s (2000) Swiss cheese model explains.

28

 The famous Swiss cheese model explains

why errors occur by comparing each defence

or a barrier that prevents errors, with a slice

of Swiss cheese. In reality each barrier has

weak spots – holes, which are constantly

moving and changing place. A single hole in

one of the barriers usually can be spotted and

fixed without bigger issues. Only when a

number of barriers fail to block the path of

error, it results in a serious incident. The visualisation of the model is presented in the

Figure 3.

There are two types of errors – active and latent, that contribute to the holes within the

barriers (Reason, 2000). Active errors refer to human actions, such as slips and

mistakes. Slips define accidents, when one action is intended, but another similar

action is carried out instead, such as typing “lettr” instead of “letter” or hitting send

instead of enter to go to new line, in the middle of chat message. Slips are unconscious

errors, usually made when the person is familiar with the goal and does not pay full

attention to the task (Laubheimer, 2015). In contrast, mistake defines the error, which

happens when the goal chosen for the task is inappropriate, even if the steps to reach

that goal were correct. For example, thinking that parameter port in configuration

refers to communication from webserver to the authentication server settings, while in

reality it is the other way around (Barret et al., 2004). There is no need to say that such

situations would result in configuration error as the two situations require different

parameter values. Mistakes are conscious errors that often arise from lack of

understanding and incomplete or incorrect mental model formed about that system

(Laubheimer, 2015). While slips are unavoidable, though they still can be prevented

by designing interfaces that account for it. For example, showing suggestions when

typing or choosing reasonable defaults. Mistakes, on the other hand, are harder to

prevent. It requires the identification of what faulty models users form about the

system and why. Then changes can be made to match the system closer to the user’s

expectation and to help the user form correct mental models of the system.

Figure 3. Swiss cheese model showing how

multiple barriers need to fail to introduce

major error (Reason, 2000, p 769).

29

Another type of errors that contribute to the holes (weak points) in the cheese (the

system) are latent errors. These errors refer to any decision made by builders,

designers, and managers in creating and running the system, which, as Reason (2000)

explains, either has potential to contribute to errors rising (e.g. tight deadlines,

understaffing, poor tools), or adds up to the weak spots of the system (e.g. design,

procedures). In the context of configuration management, it would take layers of

insufficient tools, poor documentation, wrong interpretation of the system and either a

slip or mistake to produce an error. However, in reality it depends on the system the

sysadmin operates, tools available to them (e.g. configuration language and its

framework), their skill and understanding of the system. Many times there are no

design decisions that would not have any potential to turn into erroneous features of a

system. It is not an easy task to design unambiguous, easily understood and

straightforward configuration languages. It requires extensive knowledge about

sysadmins, their expectation towards the system and mental models they have formed,

in order to even begin to understand where the weak points in configuration languages

lie.

2.2.4. Mental models

Mental models are conceptual models that represent the understanding of how

something works. They are built from experience, observation (e.g. inferring devices

and systems) and instruction (e.g. reading manuals) (Norman, 2013). Mental models

include concepts, prototypes, categories, identities, stereotypes and are constantly

updated, especially in cases when discrepancy between the outcome and the

expectation is experienced. Different people can have different models of the same

thing. People can also have multiple and even contradictory models for the same thing,

in this case the environment dictates which model will be called out (World Bank,

2015).

In new situations we tend to rely on mental models for making decisions, they are like

default assumptions we can rely on. Good models allow successful prediction of the

consequences of actions. Without a mental model the user operates blindly following

instructions and not being aware of what to do in the case of error (Norman, 2013).

Since a big part of a system administrator job is troubleshooting, it is especially

30

important to create tools which would allow users to form correct mental models about

its behaviour.

 Norman (2013) also noted that a good conceptual model does not need to involve all

the inner workings of the system, it is enough to understand the relationship between

the controls and the consequences. It is interesting to note, that people may even ignore

all the evidence that does not agree with these default assumptions and instead fill in

missing information based on their mental model rather than evidence (World Bank,

2015). Since we base our decisions on these models, the actual models system

administrators form about the systems and tool they work with are significant.

Hebrec and Stiber (2001) were interested in uncovering the mental models of system

administrators. They have conducted a survey questioning participants about what they

know, what they don’t know and what they think about the system they are working

with. 54 participants answered 8 questions about their perception of the system

(generic vs. unusual), how much they felt they understood the system (0% vs. 100%),

the main gap in their knowledge about the system (hardware vs. software), the source

of their skill and knowledge (education vs. real world experience) and what actions are

they most likely to take when something is not working (use of diagnostic tools vs.

consult more experienced people vs. figure it out through experimentation). However,

such questions do not reveal much specification of participant’s mental models. At

most it provides information on whether they thought the system was difficult or not,

and who they trusted for advice.

31

3. Concept development

In order to explore impact of ordering, we have first chosen the following features used

in configuration languages: inheritance, scope, referencing and ordering, each of

which are discussed in the following sections. Each of these features can have a few

different underlying models and therefore differ in their implementation across

languages. Since we discussed these features in a higher level, including variations of

the implementations across Puppet, SmartFrog and L3, we refer to these features as

concepts. The different models of the same concepts, later in this study,

interchangeably are called versions and interpretations of these concepts.

Configuration tools are built according to some underlying model, which regulates the

types of objects, relationships and operations that can be described. Different tools use

different syntax to describe these models, however, that does not necessarily mean that

the models also differ (Anderson, 2006). We studied features of Puppet, SmartFrog

and L3 to find out whether they differ and how. These configuration languages are

quite powerful and include a lot of features. Therefore, only a few could be discussed

in this study. We aimed for features that appear in all three languages and seem to be

particularly confusing, as it is more likely to be the weak spot of the language or

languages. In addition, the purpose of a study like this is to discover the holes

(weaknesses) in the cheese (configuration language) and suggest ways to fill those,

before errors are exposed via incidents.

Qualitative data analysis was used to explore each of the languages, their syntax,

behaviour, ordering rules and various features. It took a fair amount of time to reach

the stage of the deeper understanding required, even with only a few of the features

across three configuration languages. While SmartFrog and L3 appeared quite

straightforward, Puppet, being the largest and most complex, took extra time to

understand at the depth required for this study.

Referencing was chosen as a primary feature for further research, because we found it

particularly confusing and adding a great deal of benefit for future languages if

resolved. Referencing, as a concept, in the context of configuration management,

32

stands for referring to previously declared attributes in order to reach their value. This

feature is interrelated with inheritance, scoping and ordering, since each of these

features has an impact on referencing, which is not always straightforward. We found

that this group of features made up small enough but self-contained problem, suitable

for this study. For this reason we took all of them into account and built our survey

around it. All five features are described in detail in following sections.

3.1. Inheritance

Inheritance is a feature that allows to copy the structure, content and behaviour (or just

either one) of one class to another avoiding duplication of the code. Inheritance can

also be defined as allowing access from one class to another, rather than containing a

copy of the original class content.

Configuration languages use instance-based inheritance (also called prototype-based),

which differ from class-based inheritance used in many object-oriented programming

languages. Using class-based inheritance the behaviour of the object is defined by the

class, which is a blueprint of a particular type of object. In contrast, using instance-

based inheritance, the object and its behaviour are first defined and then it is reused as

a prototype for other objects.

Inheritance can be single, multiple or multilevel. Single inheritance means that there

is only one base class (prototype), which was inherited, multiple inheritance means

that the new class inherited from several original classes (prototypes). Multilevel

inheritance means that the class inherited from another class, which itself was not

original (prototype), but also inherited. Multilevel inheritance creates a hierarchy of

classes.

In the simplest form, using our own pseudo code, single instance-based inheritance

might look like this:

class-a {

 variable1 = value1,

 variable2 = variable2,

33

 }

class-b inherits class-a {

 variable1 = value4,

 variable3 = value3,

 }

Here, class-b inherits from class-a, meaning class-a is a prototype, also could be

thought of as a parent to class-b. After inheritance, class-b has access to variable1

and variable2 values, as well as to variable3.

It depends on the model used by the configuration language, how inheritance is defined

and whether order matters in it. Our pseudo code above can be interpreted in few

different ways depending on desire, for example:

1. class-a contains variable1 and variable2, while class-b contains

variable1, variable2 and variable3.

2. class-a contains variable1, variable2 and variable3, while class-b

contains variable1 and variable3.

3. class-a contains variable1 and variable2, class-b contains variable1

and variable3.

Some implementations are more common across configuration languages than

others. In addition, such interpretation as number 2 mentioned above was not found

to be true in any of the three languages analysed. However, some novice users

might still form such interpretation.

Inheritance can come in various shapes and forms, it is not always indicated using

some key word, like inherits (Puppet) or extends (SmarFrog), it can also be noted

just by the structure of the code itself. For example, in L3 inheritance as a feature

is not present, instead, there is a feature called composition, which allows to

compose partial configurations into one. Composition in L3 looks like this

(Anderson, 2016a):

y: { b:1 } <+> { c:2}

34

Where b and c are different blocks being composed into one block y, the result of such

composition is:

 y: { b:1, c:2}

In Puppet, the classes refer to the collections of attributes, which then can inherit and

override values from other classes. An example (Krum et al., 2013, p. 37):

node basenode {

include sudo

include mailx

}

node 'web.example.com'

inherits basenode {

include apache

}

}

include ssh

The basenode and web.example.com both contain sudo and mailx classes,

web.example.com node also contains apache. However, inheritance in Puppet it is

highly discouraged. Puppet Style Guide notes (on docs.puppet.com):

“Inheritance can be used within a module, but must not be used across

module namespaces. Cross-module dependencies should be satisfied in a

more portable way, such as with include statements or relationship

declarations.”

As mentioned in Puppet Style Guide, the include statement can be used to achieve

essentially the same results as intended with inheritance and avoid code duplication.

Using the include statement, class can be included in another class scope, allowing

access to variables defined within that scope. Scopes are explained in more detail in

the next section.

SmartFrog supports instance-based inheritance through prototyping, meaning that

attribute values from the prototype can be inherited and also overridden with different

values, if needed (Herry and Anderson, 2015). SmartFrog does not define types of

components (classes), therefore any component can be a prototype for another

(Goldsack, 2003). A simple example of prototype inheritance in SmartFrog (Goldsack,

2003, p. 3):

35

//webservertemplate.sf

webServerTemplate extends {

sfProcessHost “localhost”;

port 80;

useDB;

}

system extends {

ws1 extends webServerTemplate {

sfProcessHost “15.144.59.34”

}

In this example, system, ws1 and webServerTemplate are all components with

collections of attributes. Component ws1 inherits from prototype component

webServerTemplate using construct extends and the value of attribute

sfProcessHost gets overridden.

Overriding is also supported in different ways across all three configuration languages.

The model of overriding explains which value wins when the same variable was

assigned different values, usually in different scopes.

In SmartFrog, the values within derived components override values in the prototype

components. L3 uses tags to mark default values (#default), which should only take

place if there is no other non-default value assigned, and final values (#final), which

are preferred over all other values. In Puppet, most locally defined values within the

immediate scope overrides less locally defined values from parent scopes.

These models of overriding are used only for the mentioned languages. However, there

are also different interpretations novice users can make. Especially if lexical order is

taken into account. One can interpret overriding in a way that global and parent

variables always override local variables as it is declared first. Or, in contrast, one

might think that the last declared value is correct no matter impact of other features.

We discuss ordering issues in more detail in section 3.5.atter impact of other features.

We discuss ordering issues in more detail in section 3.5.

36

3.2. Scope

Scope refers to the collection of variables or resources, grouped together and often

enclosed in curly brackets { }, this is also called class in Puppet, component in

SmartFrog and block in L3. Depending on the configuration language, there could be

variety of scoping approaches used. For example, content within curly brackets can be

allowed to be accessed from only inside of its own scope (the curly brackets), or also

from outside of it.

Usually there are two scopes – local and global. Local variables refers to the variables

declared inside of the block, component or a class, while global variables are all the

variables defined outside of the component, class or block. Global variables are

accessible from anywhere and local variables are accessible only from its own scope

(hence the name). L3 and SmartFrog has these two scopes. Puppet, on the other hand,

has stricter scoping rules.

As Krum et al. (2013) explained, there are four scopes always available in Puppet: top

scope, node scope, parent scope and local scope. Top scope includes anything that is

declared in the Puppet language file, called manifest (ending .pp). Anything written

within the curly brackets of node definition belongs to the node scope. Local scope

refers to a single class or defined type. Parent scope is created through inheritance, it

is the local scope of original class and becomes parent scope to another class once

inherited. Parent scopes can be assigned not just by inheritance, but also by declaration

using include statement.

All the scopes in Puppet form parent-child relationships, where a child has an access

to all of the parent scopes, but the parent does not have access to the child scopes.

Therefore, a single class has access to its own local scope and also inherits from the

parent, node and top scopes. In contrast, the node scope would inherit from top scope

only.

Puppet identifies scope lookup rules, which determine when the local scope becomes

a parent scope to another local scope (in docs.puppet.com). These rules are called static

and dynamic scopes. The difference between them in Puppet is quite significant. In

static scoping, parent scopes can only be assigned by the inherits keyword (and

37

lambdas, but we are not considering it in this study). All the other scopes are just local

scopes with no parents and have access to only the node and top scopes. Puppet

documentation (in docs.puppet.com) states that static scopes are not dependent on

evaluation order and their contents are determined by the class definition, as long as

the class is declared inside the node scope, it has access to both top and node scopes.

It also states that variable assignments are evaluation order dependant, meaning that

variable cannot be resolved before it is assigned.

In contrast, dynamic scoping in Puppet means that parent scopes can be assigned not

just by the inherits keyword, but also by declaration (include). Each scope has one

parent, but can have unlimited number of grandparents, it also receives content from

all of them with more local values overriding less local ones. The parent class is a base

class and it is the first place where derived class has been declared. However, if the

derived class is being declared, but its base class has not been yet declared, it is

immediately declared in the current scope, which results in the base class being

inserted between the current scope and the derived class. As one of the dynamic scope

characteristics it is also mentioned that since classes can be declared many times using

the include function, and that the contents of a given scope are evaluation order

dependant (in docs.puppet.com).

Puppet used to use dynamic scoping for both variables and resource defaults, but not

so long ago they have swapped to static scoping for variables. However, dynamic

scoping is still used for resource defaults.

3.3. Referencing

Referencing is the action of calling a value of an attribute, defined elsewhere. Usually,

when reference is used for a variable or resource which has not been declared yet, it is

called a future reference.

In Puppet, references can be used for variables and resources. Static scope applies to

variables, which means variables has to be declared before they are referenced to.

Resource defaults are evaluated according to dynamic scope, therefore order issues do

not apply. Using both static and dynamic scopes introduce inconsistency in Puppet

38

reference feature. Therefore, system administrators would need to create several

mental models to represent referencing within Puppet, and be able to recall the correct

one each time when needed. It could be already confusing to recall referencing models

for each different configuration language, having to store two of those for one language

puts more cognitive load on the user and increases the risk of confusion resulting in

mistakes.

Both variable and resource references can be accessed only in local, parent and

grandparent scopes. For example, if we applied Puppet rules to our pseudo code:

Library {

 $type = student,

 Profile {

 account = $account,

 type = $type

 }

 $account = standard,

 }

}

The variable Profile.type would have a value of student, as it is declared before

referencing in the parent scope. In contrast, the variable account would be undefined,

since it is declared after referencing. The reference value, in Puppet, is first searched

in the local scope, then in the parent scope and so on. In contrast, global variables are

found at the top scope.

As already mentioned, depending on scope (static or dynamic), referencing will be

handled differently. Wilkinson (2011) explained that if an unknown variable is being

referred to under dynamic scope, the version of the variable used will be the one in

scope at the time the function is called. In contrast, if an unknown variable is being

referred to in static scope, the version used will be the one in scope within the enclosing

code. Static scope allows variable binding to be checked and resolved before

compiling, while in dynamic scoping it is unknown whether a compile will be

successful and provide the desired outcome until it is compiled.

In L3, default references are interpreted first in the current block and then the next

closest block is searched, while absolute references are interpreted in the top block

39

(Anderson, 2016a). In addition, reference to any resource can be used as a value. In

such a situation, L3 evaluates both – static and dynamic versions of it and returns a

composition of both values. Anderson (2016a) explains that in most cases only one of

those values will be defined, therefore it will result in the only possible valid

interpretation. For example (Anderson, 2016b, p. 2):

x: 1

a: {

 x: 2

 b: { c: { d:$.x } }

}

If default reference is being used, the variable a.b.c.d. value would result in 2. If

absolute reference is being used, a.b.c.d. would have value of 1.

In SmartFrog, references can appear as a name of an attribute, on the left hand side,

called placement, as a reference to the prototype, and as a link – an attribute value

referring to another attribute, whose value is then copied, on the right hand side

(Goldsack, 2003).

3.4. Ordering

It is often thought that in declarative languages order does not matter. However, we

found that order does tend to matter in certain cases.

First of all, there are a few different orders in configuration languages, we separate

two, which are lexical and evaluation order. Lexical order refers to the order in which

configuration is written, while evaluation order refers to the order in which entities

are evaluated. There are two ways entities can be evaluated: in an early manner (eager)

and in a late manner (lazy). Early evaluation is used in static scope, while the late

evaluation is used in dynamic scope.

3.4.1. Evaluation order

All three configuration languages support both early (static) and late (dynamic)

evaluations.

40

L3 compiles both early and late evaluations and only provides tags to specify the

evaluation order for the purpose of debugging and experimentation (Anderson, 2016a).

SmartFrog use tag lazy to indicate the need of late evaluation. Otherwise, references

are resolved in the current context. Evaluation example in SmartFrog (Goldsack,

2003, p. 4):

// List of templates

include “webservertemplate.sf”;

include “dbtemplate.sf”;

system extends {

commonPort “8080”;

ws1 extends webServerTemplate {

sfProcessHost

port ATTRIB commonPort;

useDB LAZY ATTRIB db;

}

ws2 extends webServerTemplate {

sfProcessHost “13.144.59.64”;

port ATTRIB PARENT:commonPort,

type “backup”;

 }

db extends dbTemplate {

userTable:rows 6;

}

}

In the example above, the variable port in w1 is a reference to commonPort and will

be replaced before deployment. In contrast, the variable useDB in w1 with the tag LAZY

will be resolved at runtime.

Puppet use static scope and, therefore, early evaluation for variables, but dynamic

scope (late evaluation) for resources. In addition, Puppet has relationship dependency

features which allow defining the resource evaluation order in relation to other

resources, i.e. which of the two needs to be evaluated first, using statements like

require and notify. Both statements work the same as the include statement, which

means they both declare the resources. The only difference is that require and notify

introduce some ordering (Larizza, 2014). The resource that is required by other

resource, will be evaluated first, while the resource notified by other resource will be

evaluated after the notifying resource is evaluated. Apart from this feature, the

41

evaluation order is not in control of the Puppet user. Also, the relationship dependency

feature alone implies that otherwise, order is not important.

3.4.2. Lexical order

As mentioned, lexical order refers to the way the code is written and structured. It is

often perceived as unimportant, however, static scope as discussed in the section 3.2

proves that lexical order matters. In particular, it states that a variable has to be declared

before it is referenced to. We found this to be important in Puppet.

Anderson and Herry (2015) noted that in SmartFrog it was very unclear, initially,

whether the lexical order in the store was important. They discovered that in practice,

language was often lexical order dependant. For example, in case of multiple

inheritance, the order in which components are written will determine in which way

they are composed. This does not quite go in line with the rest of the language. It is

likely that novice system administrator would not be aware of such behaviour until

running into errors. This, as in Puppet, adds more cognitive load on the user and

requires memorizing such aspects of the language. In addition, it does not offer any

cues to make recall easier. Anderson and Herry (2015) also found that the SmartFrog

compiler supported forward references, while semantics did not.

In Puppet, lexical order is important for variables as static scope is used to evaluate

them. Therefore, future referencing is not supported for variables, but is supported for

resources.

L3 states that the lexical order within the block is not significant, which is in line with

the popular view that order in declarative languages does not matter.

We were interested to see whether system administrators also found ordering to be

insignificant in declarative languages and in our pseudo code. In addition, we were

seeking to explore whether lexical order impacted their interpretation of the pseudo

code presented.

42

43

4. Methodology

The purpose of the study is to research the expectation and intuitive judgement of

system administrators, when presented with an unknown configuration language. We

were interested to find out what mental models participants build regarding

inheritance, scoping, referencing, lexical ordering and evaluation order. We then

compared participants’ preference to the models of these concepts existing in different

configuration languages. To explore what mental models were most preferred across

experienced, novice and potential (students and other interested) system

administrators’ a survey was designed, thoroughly tested and implemented using the

Bristol Online Survey tool. The data collected was quantitatively analysed using

Microsoft Excel and Chi-square test.

4.1. Choosing the method

Such exploratory research methods like semi structured interview, case study, analysis

of artefacts and experimental study and survey were carefully considered. The survey

method appeared to fit our goal, needs and capabilities the best.

Since the scope of the project has been narrowed down to a quite small and self-

contained problem – referencing, the semi structured interview turned out to be

irrelevant. Semi structured interviews are useful when collecting qualitative data.

However, we were interested in collecting both qualitative and quantitative data. In

addition, semi structured interviews are incredibly time consuming. In such a tight

timeframe for the project it was decided to go for a more compatible method.

Originally, the main method was chosen to be case studies. It was expected to conduct

few such studies with several participants and get them to solve presented examples in

“thinking out loud” manner to be able to better understand their thought flow and how

different details impact their judgement. However, since the course of the project

changed its direction along the way, it was decided that case studies could not provide

enough data for the amount of time it would take. This approach is especially suitable

in the design stage of a product or programming language when there are some

44

concrete goals or decisions to make. Such a method would point out the major flaws

and could improve the usability greatly after only conducting it with very few

participants.

The survey method has been chosen because it fit the requirements the best. An online

survey can be reached in any place, internet connection being the only requirement. It

can be distributed easily by sharing an URL and it can provide both quantitative and

qualitative data without the need to conduct different studies. In addition, it takes the

least amount of time to set up and time in which responses are being collected can be

managed to fit tight deadlines.

4.2. Designing the survey

The survey method has been chosen as a best fit to the requirtements. An online survey

can be reached in any place, internet connection being the only requirement. It can be

distributed easily by sharing an URL and it can provide both quantitative and

qualitative data without the need to conduct different studies. In addition, it takes the

least amount of time to set up and time in which responses are being collected can be

managed to fit tight deadlines.

The purpose of the study was to find out participant’s intuitive judgements and

expectations towards certain features in declarative languages. Such goal is quite

abstract and there is no one uniform way to find out what mental models do users build

in their head about things they interact with. If asked directly it is likely the answers

will not be as informative or not even in line with actual actions. This could be

impacted by misunderstanding, therefore more information lies in the observation.

Keeping in mind these constraints several survey designs were carefully considered

before agreeing on a final approach. The survey had undergone 7 design – test – adapt

cycles before it reached the desired stage and the deadline for developing it.

At the beginning of the survey development, presenting real code examples to the

participants appeared to be a good choice. Such real code snippets were taken from

Puppet and Smart Frog and participants were asked to match the outcome snippet to

the configuration snippet that most likely produced the outcome. We have quickly

45

learned that real configuration examples were too ambiguous for our needs: no concept

could have been considered in isolation, because they are too closely related.

Changing configuration examples to be more isolated revealed another issue in the

survey: the time it was taking to answer a single question was simply too long. The

snippets were stripped to their essence of one value per answer only to discover that

while focusing on the form, the purpose got forgotten. Trying to test intuitiveness in

judgement while using real situational code was essentially the same as testing the

knowledge of the configuration languages and their confidence in it. This is because

different configuration languages support different versions of the same concept,

therefore one should not expect that presenting the participant with particular language

of the code will not influence him to use the version of the concept supported by that

language.

To avoid this familiarity bias, it was decided to create our own pseudo code in a similar

form to the analysed declarative languages, instead of real configuration examples.

Such an approach reduced bias of the language used in the examples, and essentially

shifted the purpose of the survey back to intuition and expectation, rather than a

knowledge. We were more interested in what system administrators thought about the

pseudo code presented to them, than what they knew about any particular language.

Of course, every user will be biased by the configuration language they are familiar

with, but pseudo code was expected not to introduce an additional bias.

4.3. Pilot test

Before launching the survey, the pilot test was carried out. A group of eight informatics

student were asked to fill in the survey for ten minutes and then discuss the survey as

a group. All the feedback collected during pilot test have been very valuable in the

development of the shortest, most straightforward and least bias survey in the given

time to serve the purpose of studying intuitive judgement in relation to configuration

language features.

The test revealed the survey was taking significant amount of time to complete and

initially contained too many confidence questions (after each regular question).

46

Participants shared that their level of confidence rose as they answered more and more

questions, because they felt they were learning a new language and got more and more

comfortable with it. Students revealed that certain statements or structure of the pseudo

configuration made them bias towards static or dynamic scoping and that they were

trying to choose approach that would make most situations work, purely because they

would have liked to have more valid answers than errors in the survey. Such preference

for validation made them choose dynamic scoping as a default mental model to rely

on much more than static scoping. Otherwise, not all presented situations would have

worked if a dynamic scoping approach was chosen.

It was also pointed out during the pilot study that the initial guess students had about

the pseudo configuration, did not necessarily matched their preference towards it. All

these comments were addressed in the final design cycle, many questions were

removed, and pseudo code was adjusted to contain the least amount of statements and

syntax symbols that could potentially make participants biased. In addition, comment

boxes and a question about preferred ordering within the pseudo code was added.

Up until this stage the survey has been designed and tested on paper. In the pre-final

stage the Bristol Online Survey Tool has been introduced and the survey has been

moved to it. The survey then has been tested before launching on most popular

browsers: Safari, Chrome, Firefox and Internet Explorer as well as on most popular

operating systems: Mac OS, Windows, Linux, iOS and Android to make sure it

appeared exactly the same on different screens and was not introducing an unexpected

behaviour.

4.4. Implementation

The final design of the survey contained five pseudo configuration code examples,

introducing various forms of previously discussed concepts: inheritance, scoping,

referencing, lexical ordering and evaluation order. Participants were asked several

questions about each example in a form of “Given the code above, what would you

expect the value of variable Post.length to be?” where Post.length refers to a variable

length within the block (can also be called component or a class) Post. All this type of

questions were multi choice, but single answer. Answer options contained various

47

values, almost each of which could be valid, depending on the interpretation (version)

of the concept chosen. For example, if a participant chose to allow inheritance and

overriding, they would choose the overridden value. In contrast, if a participant chose

not to support inheritance and overriding, he might choose “undefined” as a value

asked, or will choose an “error” as such feature is not supported. The difference

between “undefined” and “error” also follows different interpretation of the concept.

When the variable is “undefined”, it might mean that its value cannot be reached from

within that class, but the variable has been declared elsewhere, while “error” could

mean that such variable has not been declared anywhere and therefore the action of

calling it results in error. To filter out confused participants, some answer options were

chosen as invalid values, which do not map to any of our chosen interpretations of the

configuration code. Otherwise, there were no incorrect or particularly correct answers.

We were testing individual interpretations and preference, not knowledge.

In addition to multiple choice single answer questions, the survey contained open

questions, asking about the mental models they chose to rely on during the task, their

experience with declarative configuration languages, preference of ordering, most

confusing aspects of configuration languages they have come across and other. Each

page contained one pseudo code example, a few questions about it and a comment box,

where participants were encouraged to leave their observations, questions and

suggestions. The full survey can be found in Appendix A.

The survey was created using Bristol Online Survey Tool, because it has all the needed

functionality and presentation. It also holds a contract with the University of

Edinburgh. The survey was then distributed using the snowballing method – it was

advertised to the targeted audience: experts in configuration language, authors of

Smart Frog configuration language, people within Puppet community, few system

administrator forums, as well as people who were more likely not to have experience

in the field: students of University of Edinburgh (Informatics and other), members of

Interaction Design Foundation and friends. The survey received interest from people

in the Puppet community and therefore had been advertised within internal Puppet

forums and personal blogs.

48

4.5. Data Analysis

The survey received vast interest and collected significant quantitative and qualitative

data. Due to the scope of the project and the unusual format of the survey, we were

not certain how successful the survey will be and what data analysis methods would

be best to use. The methods, therefore, were chosen after carefully considering the data

collected, once the survey was closed. Descriptive analysis method was used to

introduce the amount and variety of the data.

We were interested to see whether there were any correlations between the models

participants chose and their experience, education, configuration languages they know,

confidence and similar. However, the survey appeared to be unsuitably designed to

carry extensive statistical analysis. Quantitative data collected, even though in the form

of frequency counts, was categorical, not numerical. For this reason, parametric

statistics analysis used for correlation, such as t-test and linear regression could not be

carried out. The data initially had one independent variable (demographics), but the

number of dependant (each concept or versions of it) and independent variables (e.g.

experience, confidence, age) can be manipulated, depending on what question is being

asked.

Due to the data being categorical, and, therefore, any pair of independent and

dependant variables also being categorical, Chi-square (χ2) test was chosen. χ2 is a

statistical analysis method used for non-continuous variables such as frequencies and

counts. It is most widely used to state the association between facts (Zibran).

In order to carry χ2 analysis the data had to be processed first. Scale scores such as

confidence, perception of easiness (i.e. How easy was the question to answer?) and

level of skill were summed across the survey in such manner that each answer

corresponding to 1 was multiplied by 1, and each answer corresponding to 5 was

multiplied by 5, all the values then were added up and normalized to provide one digit

score between 1 and 5 per participant, indicating confidence level, perception of

easiness of the questions and skill level so then the frequency table could be created.

49

In addition, the answers from questions testing each of the concepts were mapped to

corresponding versions of concepts also summed across, if more than one question

was associated with the concept. Such observed frequency counts then were cross

tabulated and expected frequencies were calculated. Expected frequencies were

calculated according to the equation: 𝑋2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖
 , where 𝑂𝑖 stands for observed

frequencies or counts and 𝐸𝑖 – for expected counts, i runs through the cells in the table

(Zibran). Then χ2 test was applied. It takes both observed and expected frequencies

and returns p value, which is probability that any correlation between entities is due to

chance. Usually used threshold levels are α = 0.05 and α = 0.01. If the p value is smaller

than the threshold value, the null hypothesis can be dismissed. Null hypothesis usually

states that the two facts or entities are independent. In this study we used α level of

0.05. The data was processed using Microsoft Excel.

Due to time constraints on this project, qualitative data have not been processed. Some

of participant’s comments were cited to illustrate and highlight certain issues.

However, no statistical analysis has been carried out on the qualitative data, but further

investigation is being considered out of the scope of this project.

50

51

5. Results

The survey was completed by 384 participants and an unexpected amount of

quantitative and qualitative data was collected. Due to the time constraints we were

not able to analyse the data extensively or even roughly address all of the aspects of it.

Most of the qualitative data was put aside for the further analysis outside of the scope

of this project. In this paper, we focused on few particular points in the data – what

interpretations of concepts did participants prefer, how confidence, skill and

experience correlates with their choices and what impact of ordering can be observed

from participants answers and comments on the topic. These questions are addressed

in more detail below.

5.1 Data description

343 (89.3%) participants were male and 18 (4.7%) were female, the other 23 (6%)

preferred not to say. A third of participants admitted to have Bachelor’s degree in IT

or related field (see Figure 4). Master’s and College degrees were also quite common

across participants. Only a tenth of survey takers indicated not to have any formal

education in IT or similar field.

Figure 4. Participants’ education.

This data does not support the earlier claim that most system administrators do not

have a formal education in IT. However, since we cannot assure a random sampling

15 (3,9%)

17 (4,4%)

19 (4,9%)

23 (6%)

40 (10,4%)

57 (14,8%)

84 (21,9%)

129 (33,6%)

0 20 40 60 80 100 120 140

Degre in non-technical field

Prefer not to answer

Doctorste Degree

Other

None

College

Master's Degree

Bachelor's Degree

Participant's education

52

of participants from the entire system administrator group, the sample could not be

considered representative. Instead, it can reveal whether there are general issues that

not only novice system administrators face in terms of configuration languages and

encourage further investigation on this matter.

The youngest participant to take the survey was 15 years old and the oldest participant

was 67 years old. 34 participants chose not to tell their age. For the rest of the

participants, the mean of age was at 38.33, median at 37.5 and mode at 40 years old.

Almost third of participants indicated to have between 2 and 5 years of experience in

configuration management and fifth said to have between 5 and 10 years of experience

(see Figure 5).

Figure 5. Participant’s experience in years using configuration languages.

In addition to the education and working experience, we have also asked participants

some questions to determine their skill levels. Participants had to identify how much

they agree to given statements in a scale from 1 to 5, where 5 is Strongly agree and 1

is Strongly disagree. The statements included such actions like writing a program that

sorts numbers in a file or using configuration management tools to install software on

multiple computers (full list questions can be found in Appendix A). The responses

then have been summed for each participant. 5 points were given for each Strongly

Agree and 1 point for each Strongly Disagree. Therefore, the maximum score a

participant could get was 25, while the smallest was 0, in case option I don’t know was

chosen. As it can be seen from the Figure 6 most participants strongly agreed to given

statements and were confident assessing their skill.

3 (0,8%)

32 (8,3%)

35 (9,1%)

49 (12,8%)

62 (16,1%)

84(21,9%)

119 (31%)

0 50 100 150

Prefer not to say

Less than 1 year

More than 1 year, but no more than 2 years

More than 10 years

I have not used it

More than 5 years, but no more than 10 years

More than 2 years, but no more than 5 years

Participants' experience using configuration languages

53

These skill scores later were normalized to fit the scale from 1 to 5, due to carrying

analysis with Chi-square test.

5.2 Confidence levels

 Five times during the survey participants were asked to indicate their confidence level

in a scale from 1 to 5, 1 being Not at all confident and 5 being Very confident. This

number corresponds with the number of examples they were presented with. As shown

in Figure 6 participants’ confidence differed a lot.

In the pilot study, discussed in section 4.3 some participants said they were getting

more confident as the number of answered questions increased. We were interested to

see whether this trend would be visible in the data collected. It appeared that the

opposite was rather true – overall confidence declined towards the end of the survey.

0 20 40 60 80 100 120 140

1

5

9

13

17

21

25

Participants skill levels

Figure 6. Participants skill levels summed across five questions.

0 10 20 30 40 50 60

1

5

9

13

17

21

25

Participants confidence scores

Figure 7. Participants’ confidence scores across the survey.

54

Figure 8. Confidence scores of all participants after answering questions about each of the five

pseudo code examples.

 The results go in line with the perception of how easy were the questions about each

example (see Figure 9).

The overall score of perception of easiness was also counted in the same manner as

overall confidence score – summing across. As shown in the Figure 10, participants

had very different experiences in terms of difficulty.

0

50

100

150

200

1 2 3 4 5

Conficence of the participants in each pseudo code example

Not at all confident Slightly confident Somewhat confident
Moderately confident Extremely confident

0

50

100

150

200

250

1 2 3 4 5

Participant's perception of easiness of the questions

Very difficult Difficult Neutral Easy Very easy

Figure 9. Change in participants’ perception of easiness through the survey.

55

Figure 10. Overall perception of easiness by participants, where 25 indicates the survey was

very easy.

A t-test revealed positive correlation between having Bachelor’s or Master’s degree

and higher confidence (p < 0.01), in comparison to having no degree. However, no

other comparison with demographic data was statistically significant.

5.3 Mental models of concepts

Results showed that two thirds of participants chose to interpret inheritance in such a

way that inheriting class received the content from the prototype class, and were

consistent thorough the survey (see Table 1). A third of participants were only partially

consistent, meaning they have chosen some answers that do not support the standard

interpretation of inheritance. In particular, a number of participants seemed to support

reversed inheritance, expecting the prototype class to receive the content of derived

class. For example, presented with the example 1 of:

[example 1]

Message {
 colour = red,
 length = 231,
 font = Ariel,
}

Post inherit Message {
 comments = 15,
}

Asked, what they expect the value of variable Message.comments to be, participants

chose all kinds of answers (see Figure 11).

0 10 20 30 40 50

1

5

9

13

17

21

25

Participants perception of easiness

56

Figure 11. The distribution of participant's answers to question 1 of the survey.

Similar behaviour was also captured in one more question of the same kind, given

code:

[example 2]

Mountain-bike inherit Bicycle {
 tyre = 26,
 kickstand = true,
}

Bicycle {
 wheels = 700,
 tyre = 28,
 kickstand = false,
 brakes = true,
}

And asked about the value of the variable, participants again chose a range of answers

(see Figure 12).

Figure 12. The distribution of participants answers to question 8 of the survey.

In addition, when similar situation was presented again, almost all participants chose

the same answer. Given this code:

[example 3]

Box {
 show-balance = true,
}

57

Player {
 tracks = 573,
 genres = 11,
 show-balance = false,
}

Music-box inherit Box inherit Player {
 genres = 9,
}

And asked about value of the variable Player.show-balance, suddenly participants

agreed with each other (see Figure 13).

There seem to be significant correlation between consistency towards inheritance

model and confidence (p = 0.000728).

Multilevel inheritance was interpreted in more than two ways by the participants. The

most popular approach was to follow the pattern of regular inheritance. In this way, if

A inherits from B and B inherits from C, the B values would override the values

inherited from C, and A would override values inherited by B. However, it was

followed by less than half of the participants. The second most common approach was

to assume that the last prototype in the chain (most to the left) would override the

values on the right. In this case, if A inherits from B and B inherits from C, the A would

receive values from C only, and those might override the values within A as well.

When asked what is the value of variable music-box.show-balance in the code

[example 3] presented previously, participants did not agree:

58

There were no significant correlations between the choice of multiple inheritance

model and gender, education or working experience or confidence.

Participants were mostly torn between two models of forward referencing. A little over

half participants assumed that forward referencing is only allowed for classes, but not

variables, similarly like in Puppet. We call this version as partially supported or

Puppet like. Another 40% of participants decided to allow forward referencing for both

classes and variables, it is named as fully supported in the Table 1. No statistical

significance was found between chosen referencing interpretation and gender,

education or experience in working with configuration languages.

Almost 95% of participants interpreted the scope as dynamic for classes. Meaning,

they found order not important and also supported forward referencing for the classes.

For variable scope, both static and dynamic interpretations were chosen equally often.

There were no significant correlation between chosen scope and gender, working

experience or education of participants.

Ordering within pseudo code was interpreted both as important and non-important by

participants. Almost half of the participants were not consistent in the way they

interpreted order. Meaning that they have sometimes treated it as significant, and in

other times as insignificant. The number of participants being inconsistent in their

ordering interpretation is very close to the number of participants who preferred the

model of static scoping, as opposite to dynamic.

59

Table 1. Frequency scores of concept interpretations (rows) and gender, education and working experience (columns).

 Gender Education Work experience

 Total Female Male n/a None College Bachelor's Master's Doctorate
Non technical
& other n/a 1> 1to5 5< n/a

Inheritance 383

Consistent standard 234 8 211 15 21 30 88 53 10 25 7 45 100 87 2

Partially consistent 126 8 110 7 15 24 37 24 7 10 8 40 45 41 0

Inconsistent/Confused 23 2 21 0 3 3 11 7 2 3 1 8 9 5 1

Multilevel inheritance 371

Follows regular inheritance 160 7 142 11 20 29 54 34 6 4 13 35 72 51 2

Last one mentioned wins 97 7 86 4 7 18 28 26 7 4 7 26 41 30 0

Confused 59 3 52 4 8 6 18 10 3 3 11 16 21 21 1

Do not support 55 1 50 4 5 2 23 11 3 3 8 16 18 21 0

Ordering 383

Inconsistent/Confused 176 7 157 13 22 25 58 44 5 17 9 43 75 58 1

Order matters 131 6 120 4 11 16 43 28 11 15 6 33 46 51 1

Order does not matter 76 5 66 5 7 16 28 12 3 6 2 18 33 24 1

Variable scope 371

Static scope variables 171 8 155 8 20 22 57 39 12 5 16 39 74 57 1

Dynamic scope variable 169 10 147 12 16 28 60 35 5 7 18 44 69 55 1

Confused 31 0 28 3 4 6 7 7 2 1 4 10 8 13 0

Class scope 380

Static scope resource 17 1 16 0 2 2 3 5 2 0 3 7 3 6 1

Dynamic scope resource 363 17 323 23 38 54 125 79 16 14 37 87 149 125 2

Forward reference 382

Partially/Puppet like 214 9 190 15 18 34 74 46 10 23 9 54 81 78

Support fully 163 10 142 10 13 26 48 40 9 18 8 41 64 58

Do not support 5 0 5 0 0 0 2 2 1 0 0 2 2 1

60

61

5.4 Confusion over ordering

In addition to all the quantitative questions, we asked participants to comment on

whether they think the order was important in the pseudo code presented. It was not

specified what order we asked about. A variety of opinions were received on the topic.

Many participants preferred interpretations in which order did not matter, according to

declarative approach:

“I interpreted code order as irrelevant.”

“I interpreted it as order independent.”

“Order per context unimportant.”

“About code order, I tried to interpret that did not matter.”

“Order doesn`t matter.”

“It looks declarative so I interpreted order as not mattering, like in other declarative

languages.”

“I didn't spot any cases where ordering would have been significant to interpretation. “

“Order does not matter, inheriter can override inherited values, inheriting same value

multiple times is an error, $variables are lexically scoped”

In contrast, a few defined order as important, since they were not following a

declarative approach:

“I interpreted them like in most procedural / object-oriented languages. Not as declarative

languages.”

“Strict ordering, as listed.”

“'Inherit' keyword was most probably a trait of object oriented programming and the order

was important.”

“I started with text order, so things are defined in sequence.”

“I decided code order mattered arbitrarily, perhaps on a cue from seeing line numbers.”

Several participants stated explicitly what order they considered important and

therefore took into account. These range across several features. For example,

evaluation order:

“Unordered compile-time, ordered run-time.”

“I assumed that the code was executed in the order it appeared, as if it was interpreted in

a single pass (rather than compiled).”

62

“I interpreted code order in a way that a computer would read through it and execute it in

order and with indentations denoting layers.”

“I initially assumed code order didn't matter re scope, visibility. It should only matter in

terms of execution sequence (imho!)”

Lexical order of variable and within the class appeared to be important to a few

participants:

 “I worked on the assumption that order within a class was significant, but that order of

class declaration was not.”

“Code order matters in assignments.”

“Order of properties should not matter. Order of variables should.”

“Roughly java style -- order within functions matters, but not class/type definitions.

Diamond inheritance problems should probably result in error over attempting to use

ordering as a solution”

Some comments provide insight in how participants rank various features in terms of

their importance in the code. A few participants have discussed such relationship

between ordering and inheritance:

“Code order doesn't need to matter, but styling wise inheritance is more obvious if they're

in order.”

“I only considered order important where two objects were inherited from. Not important

where objects were defined.”

“Line by line order seemed a bit more flexible. But on a line for inheritance was harder

to judge.”

“I though order was not important but I took inheritance into account.”

“From code order it was hard to tell how to interpret. Much easier when there were

explicit inherits from statements.”

“Subclasses override superclasses, order matters less than inheritance, strict scoping.”

“In one example there was a resource/class that was defined with inheriting another

resource/class. In this case I made the example of violating order matters as the class

above was referencing the later class directly.”

Scoping appeared to be another concern for participants in the context of ordering:

“Scope > order but order looked important.”

“I chose to only take scope into account, as ordering is much less trivial”

“Since there is scope, as indicated wiht {}, i would expect order to be irrelevant”

“Well, order shouldn't matter, but it confuses things. Back to the question: It's all about

scoping. Values at an innner scope, or in a derived class, override values at the outer scope

or base class.”

63

And since scoping could not be thought of without referencing, the latter was also

mentioned by participants:

“I have a strong preference for languages in which order does not matter, while scope

matters (more local definition takes precedence). Thus, I tried to interpret the snippets as

such. As for multiple definitions, anything that introduced ambiguities as how to interpret

it should result in an error.”

“It seems logical to assume that if a variable is defined, then subsequently changed then

it would take on the new value - that is whole point of a variable.”

“If code was out of order, just pretended it wasn't, but for multiple variable declaration, I

chose the last time if it was still in scope, or error if it was out of scope.”

However, quite a few comments indicated that people were not even sure what models

they used to evaluate situations, whether order mattered or not. Or revealed to have

used different models according to the code presented:

“It's just confusing.”

“It's complicated.”

“I choose to not interpret them if they did not seem obvious.”

“I think order should matter, but it wasn't clear from this code if the language cared or

not.”

“If the language contained definite statements as to how it was ordered, then I used them.

If not, I'm not prepared to guess.”

“Languages that looked more like interpreted languages I already know, I assumed might

depend on order. Others that appeared declarative or looked like compiled languages I

decided order might not matter.”

A few non-feature specific comments revealed that order does tend to cause confusion,

especially when most expected not to be important:

“I usually thing that for a configuration language, order must not be relevant, so I think

that all the time. But I have being burnt in past to do not assume too much just by looking

at the code, there are always some tricks and gotchas.”

“I believe code order is more of a restriction, than trying to provide order, but this is what

are we used too. Variables could be lexically scoped using blocks.”

“Code order often matters, but class order may not. Referencing classes for inheritance

before they are defined may be understood by a compiler and re-ordered; accessing class

variables vs instance variables may not be detected properly. This varies wildly by

language, but many modern languages have a tendency to minimize the impact of

ordering, but is not a guarantee regardless of language age. Additionally, inheritance,

64

access of undefined parameters, and access of undefined variables also vary. In fact, in

some languages, there is no traditional "definition" for variables, they are simply

instantiated on the first reference. How the language handles these decisions can have

cascading impacts on my interpretation of the language usage.”

65

6. Discussion

In the need to keep IT services up and running at all times and in the context of

expensive, yet unavoidable, configuration errors, the goal of finding ways to close the

gap between inexperienced system administrators and the tools designed for

experienced system administrators is crucial in order to stop human error.

In this study we suggested approaching human mistakes from a Human Factors

perspective, by exploring what is it that system administrators fail to understand about

the system, why, and how could it be designed to allow easier adoption of correct

mental models. We have studied several features of three declarative configuration

languages (Puppet, SmartForg and L3) and built a survey to collect information about

the participants’ interpretations of unfamiliar pseudo code, aiming to uncover features

of the languages that cause the most confusion and lead to mistakes. By exploring

these erroneous parts of the languages we hoped to help improve existing configuration

languages and create new and better configuration tools.

Results revealed that even though most participants felt quite confident, the overall

levels of confidence declined thorough the survey. There could be various reasons

behind this, but one way to look at it would be considering the design of the survey.

The two first examples were very similar in terms of layout of the code and questions

asked, the confidence levels for the first and second examples were also extremely

high in comparison to the rest of the survey. Still, the second example questions

received the highest confidence scores, possibly because at the time of answering

those, participants would have seen similar pseudo code already twice. It could have

confirmed the initial model they decided to adopt and led to an expectation that

following examples would align in the same manner. However, the following

examples introduced different concepts and might have challenged the adopted model.

Therefore, the confidence levels started to decline.

It appears that over half of the participants felt familiar with the inheritance concept

and were consistent in its interpretation throughout the survey. However, up to a third

of the participants occasionally selected such answers that supported the reverse model

66

of inheritance. Meaning, that due to inheritance, the prototype class receives the

content of derived class. We hypothesised that such unexpected and inconsistent

judgement could be explained in one of the two following ways. It is either the result

of rushing, lack of focus and misreading the questions, thinking that the class

mentioned is a derived class, because of similar questions before and after in the

survey, or confusion caused by lexical ordering of the code, especially since ordering

is the only thing that differed across those three situations, which all received different

participant’s interpretations (presented in section 5.3).

Over 50 participants marked I don’t know when questioned about multilevel

inheritance. The remaining participants split into three groups. There is a group that

prefers multilevel inheritance unavailable as a feature, as it might reduce confusion.

The other two groups supported the multilevel inheritance, but in different ways. One

group of participants applied standard inheritance rules, while the other interpreted in

such way that the last defined (most left) prototype takes over the classes on the right.

However, we cannot be entirely sure that such model was really chosen by all the

participants, as it could be that some other rules appeared more important to the

participants. For example ordering. Participants might not care much about order of

inheritance, but care about the order of declaration instead, and therefore the value

marked is based on that interpretation.

Dynamic scoping for classes was supported consistently by nearly all of the

participants. Considering that most participants were experienced and familiar with

Puppet, it seemed fair that this concept did not introduce any confusion. Likely for

this reason, future referencing was mostly supported in a partial manner, used in

Puppet – future referencing allowed for classes, but not for variables, due to different

scope rules. Less than half participants chose to interpret future reference as fully

allowed for both variables and classes. Similar distribution could be seen in the

interpretation of variable scope. Almost an identical number of people chose both

static and dynamic scope for variables. Such equal division is an interesting indicator

that none of the two is significantly worse than the other, or could possibly also

indicate misunderstanding of what a declarative language should look like rather than

what it looks like.

67

Participants’ interpretation of the ordering concept appeared to be especially uneven.

It is likely that participants supporting partial ordering come from Puppet background,

since the mixture of static and dynamic scopes introduce inconsistency in ordering

across. However, the other two groups of people chose to either take ordering as

absolutely important or not. Such division could be purely based on practice and

declarative versus imperative configuration tools usually used by the participants.

Such division in the interpretations of the participants and also some of their

comments, presented in the section 5.4 suggest, that the code itself is not clear on

whether order is important or not. A few participants have also indicated that they were

changing their interpretation of each example code (the survey had 5 in total)

depending on what previously used language it reminded them of. This indicates that

since many system administrators know many different languages, they also need to

carry several mental models in their head and be able to correctly recall the one needed

with often little environment support. From the comments in the section 5.4 we have

learned that our pseudo code was insufficient to provide enough cues and decide

whether certain features were important and how one should expect them to work.

6.1 Conclusion

System administrators are often required to know multiple languages and tools and be

able to use them accordingly. This means that they are required to form several mental

models for often the same features, but corresponding to different languages. They are

then required to recall the needed model correctly at all times, based on limited cues

from the environment, such as curly brackets, nesting or certain keywords.

Quicker and more successful recall of models could be accommodated by keeping the

consistency of configuration language syntax in line with other languages sharing the

same features and functionality and providing distinctive and uncommon cues for

features that are specific to the language.

Such distinction between common (known) and specific (new) would allow the user to

rely on his previous experience when working with known features and would help

build new models that are not confused with other similar features across the languages

that might have similar names, but different functionality and vice versa.

68

Order is often thought of as unimportant in declarative configuration languages. More

specifically, lexical order seems unimportant because the configuration defines the

state, not the process. In addition, evaluation order seems unimportant because the

declarative framework will sort it out for the user without his knowledge. But these

views are considering ordering rather in a higher level as a single feature out of any

context. Therefore, it is not surprising that it is perceived as unimportant.

In contrast, the results from our study shows that once you put the ordering feature in

the context of configuration language, it has high potential to result in a lot of

confusion.

Even in the Puppet, order matters when it is thought of in the context of static variable

scope. Order also matters when constructing an inheritance chain for multilevel

inheritance. You would not want to get all the overriding wrong. It matters in the

context of referencing, as the user might not always be aware when the reference

becomes future reference. Participants who took our survey struggled despite their

education, working experience, confidence and skill, because they did not know

whether the order was important and how to find it out. It leads them to adopt some

mental models that often were inconsistent. The same way novices are not aware of

internal specifics apart from what is in front of them and are encourage to build

incorrect mental models without guidance. Therefore the cues indicating the

functionality of the language and consistency across would allow mental models to be

built quicker, easier and more successfully.

6.2 Limitations

The survey provided a lot of quantitative and qualitative data and suggested some

insights into the usability of configuration languages and ordering impact. This project

was quite abstract and open ended, and since there were no guidelines on how to

conduct research on mental models people form about systems, the study has a number

of limitations. However, a lot of lessons have been learned in the process.

69

First of all, all the results were interpreted in a way that we thought was fair, but

subjectiveness in such case cannot be avoided. The pseudo code created for the survey,

the mapping between answers and concepts, the interpretation of results, it is all based

on human judgement, therefore can be considered subjective. In addition, the pseudo

code was created gathering inspiration from the studied configuration languages and

therefore syntax and structure could have primed the participants to choose one

interpretation over another.

The subjective interpretation of results could have been avoided if the survey had been

designed in a suitable way for quantitative analysis. In addition, even though we tried

to avoid as much bias in our survey and pseudo code, it is impossible to provide

completely unbiased survey. One day after launching we have received comments

from participants indicating that since Puppet was used as an example in several

statements across the survey, it appeared as we were priming participants to interpret

code in a Puppet manner.

The survey undergo several design cycles, but mistakes were still not avoided. Several

notations in the questions were not clear enough to indicate what was asked for and

this impacted participants’ judgement. The last example turned out to be faulty (even

though it still produced interesting results), but was only noticed after the survey was

closed.

In addition, the participants lacked feedback to be able to interpret how such pseudo

would code work. Providing participants with static representation of the system and

asking them to form dynamic model of it is just not fair or realistic. However, it was

only understood at the end of the project when there was no time to change things.

6.3 Future work

One of the main limitations was that participants were asked to evaluate the code

without actually being able to click compile button. If done over new this project would

have been focused on creating a small debugging game to accommodate for interactive

environment to test the same mental models formed around same concepts. Such

approach might also appear more attractive to inexperienced people than the survey.

70

However, since this study was exploratory and open ended, there are many things that

could still be looked at in more detail. For example, similar surveys could be promoted

in different than Puppet community circles to be able to compare preferred mental

models of same concepts. Also, different aspects of languages could be addressed in

similar manner, considering the limitations we have found and documented.

71

Bibliography:

Anderson, P. & Herry, H. (2015). A Formal Semantics for the SmartFrog

Configuration Language. Journal of Network and System Management. 1-37.

DOI: http://dx.doi.org/10.1007/s10922-015-9351-y

Anderson, P. (2006). System configuration. SAGE short topics in system

administration, USENIX Association.

Anderson, P. (2016a). Composition and Reference in Declarative Configurations.

Draft of 2015/10/26, 16:11. University of Edinburgh.

Anderson, P. (2016b). The L3 Configuration Language. Draft on 2016/06/14, 11:23.

University of Edinburgh

Attariyan, M., Flinn, J. (2010). Automatic Configuration Troubleshooting with

dynamic information analysis. Proceedings of the 9th USENIX conference on

Operating systems design and implementation, 237-250.

Barrett, R., Kandogan, E., Maglio, P. P., Haber, E. M., Takayama, L. A., Prabaker, M.

(2004) Field Studies of Computer System Administrators: Analysis of System

Management Tools and Practices. Proceedings of the 2004 ACM conference

on Computer supported cooperative work, 388-395. DOI:

10.1145/1031607.1031672

Border, C., & Begnum, K. (2014). Educating System Administrators. USENIX; login:

39, 5 (October 2014), 36-39.

Bozman, J. S., Perry, R. (2010). The business value of large-scale server

consolidation. IDC Whitepaper. Available at: http://www-

05.ibm.com/innovation/cz/leadership/pdf/POL03073USEN.pdf (Accessed: 9

August, 2016).

Brodkin, J. (2012). Why Gmail Went Down: Google Misconfigured Load Balancing

Servers. Available at: http://arstechnica.com/information-

technology/2012/12/why-gmail-went-down-google-misconfigured-chromes-

sync-server (Accessed: 11 April 2016).

http://dx.doi.org/10.1007/s10922-015-9351-y
http://dx.doi.org/10.1145/1031607.1031672
http://www-05.ibm.com/innovation/cz/leadership/pdf/POL03073USEN.pdf
http://www-05.ibm.com/innovation/cz/leadership/pdf/POL03073USEN.pdf
http://arstechnica.com/information-technology/2012/12/why-gmail-went-down-google-misconfigured-chromes-sync-server
http://arstechnica.com/information-technology/2012/12/why-gmail-went-down-google-misconfigured-chromes-sync-server
http://arstechnica.com/information-technology/2012/12/why-gmail-went-down-google-misconfigured-chromes-sync-server

72

CircleID.com. (2009). Misconfiguration Brings Down Entire .SE Domain in Sweden.

Available at:

http://www.circleid.com/posts/misconfiguration_brings_down_entire_se_do

main_in_sweden/ (Accessed: 11 April 2016).

Collard, J., Gupta, N., Shambaugh, R., Weiss, A. & Guha A. 2015. On Static

Verification of Puppet System Configurations. Available at:

http://arxiv.org/pdf/1509.05100v3.pdf (Accessed: 4 August 2016).

Dapeng, J. (2007). Personal Firewall Usability – A Survey. Seminar of Network

Security. Available at:

http://www.tml.tkk.fi/Publications/C/25/papers/Jiao_final.pdf (Accessed: 11

April 2016)

Dong, Z., Ghanavati, M., Andrzejak, A. (2013). Automated Diagnosis of Software

Misconfigurations Based on Static Analysis. Proceedings of the 2013

International Conference on Software Engineering, 312-321.

Ford., B. (2014). Puppet’s Declarative Language: Modelling Instead of Scripting.

Available online: https://puppet.com/blog/puppet%E2%80%99s-declarative-

language-modeling-instead-of-scripting (Accessed: 15 August 2016).

Goldsack, P., Guijarro, J., Lain, A., Mecheneau, G., Murray, P., Toft, P. (2003).

SmartFrog: Configuration and Automatic Ignition of Distributed Applications.

A technical overview paper from the 2003 HP Openview University

Association conference. Available at:

http://www.hpl.hp.com/research/smartfrog/papers/SmartFrog_Overview_HP

OVA03.May.pdf (Accessed: 9 August, 2016).

Gray, J. (1986). Why do computers stop and what can be done about it? Symposium

on Reliability in Distributed Software and Database Systems.

Hrebec, D., G., Stiber, M. (2001) A Survey of System Administrator Mental Models

and Situation Awareness. In Proceedings of the ACM SIGCPR

Conference. (pp. 166-172).

http://www.circleid.com/posts/misconfiguration_brings_down_entire_se_domain_in_sweden/
http://www.circleid.com/posts/misconfiguration_brings_down_entire_se_domain_in_sweden/
http://128.84.21.199/find/cs/1/au:+Collard_J/0/1/0/all/0/1
http://128.84.21.199/find/cs/1/au:+Gupta_N/0/1/0/all/0/1
http://128.84.21.199/find/cs/1/au:+Shambaugh_R/0/1/0/all/0/1
http://128.84.21.199/find/cs/1/au:+Weiss_A/0/1/0/all/0/1
http://128.84.21.199/find/cs/1/au:+Guha_A/0/1/0/all/0/1
http://arxiv.org/pdf/1509.05100v3.pdf
http://www.tml.tkk.fi/Publications/C/25/papers/Jiao_final.pdf
https://puppet.com/blog/puppet%E2%80%99s-declarative-language-modeling-instead-of-scripting
https://puppet.com/blog/puppet%E2%80%99s-declarative-language-modeling-instead-of-scripting
http://www.hpl.hp.com/research/smartfrog/papers/SmartFrog_Overview_HPOVA03.May.pdf
http://www.hpl.hp.com/research/smartfrog/papers/SmartFrog_Overview_HPOVA03.May.pdf

73

Johnson, R. (2010). More details on today’s outage. Available at:

http://www.facebook.com/notes/facebook-engineering/more-details-on-

todays-outage/431441338919 (Accessed: 11 April 2016).

Kandogan, E., Maglio, P., Haber, E., & Bailey, J. (2012). Taming Information

Technology: Lessons from Studies of System Administrators. Oxford

University Press, USA.

Kanies, L. (2012). Why Puppet has its own configuration language. Puppet.com.

Available at: https://puppet.com/blog/why-puppet-has-its-own-configuration-

language (Accessed: 6 August, 2016).

Keller, L., Pupadhyaya, P., Candea, G. (2008). ConfErr: A Tool for Assessing

Resilience to Human Configuration Errors. Proceedings of the IEEE

International conference on Dependable Systems and Networks with FTCS and

DCC, 2008. DOI: 10.1109/DSN.2008.4630084

Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Scaffidi,

C., Lawrance, J., Lieberman, H., Myers, B., Rosson, M. B., Rothermel, G.,

Shaw, M., and Wiedenbeck, S. (2011). The state of the art in end-user software

engineering. ACM Comput. Surv. 43, 3, Article 21 (April 2011), 44 pages.

DOI: http://doi.acm.org/10.1145/1922649.192265

Krum, S., Van Heveling, W., Kero, B., Turnbull, J., McCune, J. (2013). Pro Puppet.

2nd Edition. Apress Berkely, CA, USA. ISBN:1430260408 9781430260400

Larizza, G. (2014). On Dependencies and Order. Available online:

http://garylarizza.com/blog/2014/10/19/on-dependencies-and-order/

(Accessed: 10 August).

Laubheimer, P. (2015). Preventing User Errors: Avoiding Unconscious Slips.

Available online: https://www.nngroup.com/articles/slips/ (Accessed: 10

August, 2016).

Liang, L. Y. (2013). Linkedin.com inaccessible on Thursday because of server

misconfiguration. Available at:

http://www.facebook.com/notes/facebook-engineering/more-details-on-todays-outage/431441338919
http://www.facebook.com/notes/facebook-engineering/more-details-on-todays-outage/431441338919
https://puppet.com/blog/why-puppet-has-its-own-configuration-language
https://puppet.com/blog/why-puppet-has-its-own-configuration-language
http://doi.acm.org/10.1145/1922649.192265
http://garylarizza.com/blog/2014/10/19/on-dependencies-and-order/
https://www.nngroup.com/articles/slips/

74

http://www.straitstimes.com/singapore/linkedincom-inaccessible-on-

thursday-because-of-server-misconfiguration (Accessed: 11 April 2016).

Lindberg, H. (2014). Getting Your Puppet Ducks in a Row. Available at: http://puppet-

on-the-edge.blogspot.co.uk/2014/04/getting-your-puppet-ducks-in-row.html

(Accessed: 11 April 2016).

Mahajan R., Wetherall D., Anderson T. (2002). Understanding BGP Misconfiguration.

SIGCOMM’02, August 19-23.

McNamara, P. (2009). Opinion: Missing dot drops Sweden off the Internet. Available

at: http://www.computerworld.com/article/2529287/networking/opinion--

missing-dot-drops-sweden-off-the-internet.html (Accessed: 11 April 2016)

Mette, A., Hass, J. (2002). Configuration Management Principles and Practice.

Published Dec 30, 2002 by Addison-Wesley Professional. Part of the Agile

Software Development Series.

Mikoliunaite, A. (2016). Usability of System Configuration Languages: Errors Caused

by Ordering. Informatics Research Proposal. University of Edinburgh

 Miller, R. (2012). Microsoft: Misconfigured Network Device Caused Azure Outage.

Available at:

http://www.datacenterknowledge.com/archives/2012/07/28/microsoft-

misconfigured-network-device-caused-azure-outage/ (Accessed: 11 April

2016).

Nagaraja, K., Oliveira F., Bianchini, R., Martin, R. P., Nguyen, T. D. (2004).

Understanding and Dealing with Operator Mistakes in Internet Services. In

Proceedings of the 6th conference on Symposium on Opearting Systems Design

& Implementation (OSDI'04) Volume 6, Pages 5-5.

Nielsen, J., Molish, R., (1990). Heuristic evaluation of user interfaces. Proceedings in

CHI ’90 Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, 249-256.

Norman, D. (2013). The Design of Everyday Things. Revised and Expanded edition.

Basic Books, A Member of the Perseus Books Group.

http://www.straitstimes.com/singapore/linkedincom-inaccessible-on-thursday-because-of-server-misconfiguration
http://www.straitstimes.com/singapore/linkedincom-inaccessible-on-thursday-because-of-server-misconfiguration
http://puppet-on-the-edge.blogspot.co.uk/2014/04/getting-your-puppet-ducks-in-row.html
http://puppet-on-the-edge.blogspot.co.uk/2014/04/getting-your-puppet-ducks-in-row.html
http://www.computerworld.com/article/2529287/networking/opinion--missing-dot-drops-sweden-off-the-internet.html
http://www.computerworld.com/article/2529287/networking/opinion--missing-dot-drops-sweden-off-the-internet.html
http://www.informit.com/authors/bio/cf731374-3036-46b8-b22a-a7e305fadd7e
http://www.awprofessional.com/
http://www.informit.com/imprint/series_detail.aspx?ser=335184
http://www.informit.com/imprint/series_detail.aspx?ser=335184
http://www.datacenterknowledge.com/archives/2012/07/28/microsoft-misconfigured-network-device-caused-azure-outage/
http://www.datacenterknowledge.com/archives/2012/07/28/microsoft-misconfigured-network-device-caused-azure-outage/

75

Norman, D. A. (1983). Design Rules Based on Analyses of Human Error.

Communications of the ACM.

Oppenheimer D., Ganapathi D., and Patterson D. A. (2003). Why Do Internet Services

Fail, and What Can Be Done About It? In Proceedings of the 4th USENIX

Symposium on Internet Technologies and Systems (USITS’03), March 2003.

Patterson, D. A. (2002). A Simple Way to Estimate the Cost of Downtime.

Proceedings of LISA ’02, 185-188.

Reason, J. (2000). Human errors: models and management. BMJ 320(7237): 768-70.

DOI: http://dx.doi.org/10.1136/bmj.320.7237.768

Ritter, E. F., Baxter, G. D., Churchill, E. F. (2014). Foundations for Designing User-

Centered Systems: What System Designers Need to Know about People.

Springer-Verlag London. DOI: 10.1007/978-1-4471-5134-0

Sverdlik, Y. (2014). Microsoft Says Config. Change Caused Azure Outage. Available

at: http://www.datacenterknowledge.com/archives/2014/11/20/microsoft-

says-config-change-caused-azure-outage/ (Accessed: 11 April 2016).

The Aws Team. (2011). Summary of the Amazon EC2 and Amazon RDS Service

Disruption in the US East Region. Available at:

https://aws.amazon.com/message/65648/ (Accessed: 11 April 2016).

The Aws Team. (2012). Summary of the December 24, 2012 Amazon ELB Service

Event in the US-East Region. Available at:

https://aws.amazon.com/message/680587/ (Accessed: 11 April 2016).

The Google Apps Team. (2013). Google Apps Incident Report. Available at:

http://static.googleusercontent.com/external_content/untrusted_dlcp/www.go

ogle.com/en/us/appsstatus/ir/ej73a82sddnv7fb.pdf (Accessed: 11 April 2016).

Traugott, S., & Brown, L. (2002). Why Order Matters: Turing Equivalence in

Automated System Administration. USENIX; LISA ’02. 99-120.

Velasquez, N. F., Weisband, S., and Durcikova, A. (2008). Designing Tools for

System Administrators: An Empirical Test of the Integrated User Satisfaction

Mode. 22nd Large Installation System Administration Conference (LISA ’08)

http://dx.doi.org/10.1136/bmj.320.7237.768
http://www.datacenterknowledge.com/archives/author/yevgeniy-sverdlik/
http://www.datacenterknowledge.com/archives/2014/11/20/microsoft-says-config-change-caused-azure-outage/
http://www.datacenterknowledge.com/archives/2014/11/20/microsoft-says-config-change-caused-azure-outage/
https://aws.amazon.com/message/65648/
https://aws.amazon.com/message/680587/
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en/us/appsstatus/ir/ej73a82sddnv7fb.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en/us/appsstatus/ir/ej73a82sddnv7fb.pdf

76

Weilli, F., Cheney, J., Anderson, P. (2016) An operational semantics for a fragment

of the Puppet Configuration Language. Technical report, August 2016,

available at http://arxiv.org/abs/1608.04999

Wilkinson, D. (2011). Lexical scope and function closures. Available online:

https://darrenjw.wordpress.com/2011/11/23/lexical-scope-and-function-

closures-in-r/ (Accessed: 10 August).

Wong, T. (2008). On the Usability of Firewall Configuration. SOUPS. July, 23-25.

DOI: 10.1.1.222.7037

Wool, A. (2004). A Quantitative Study of Firewall Configuration Errors. Computer.

Vol. 37 (6). 62-67. DOI: 10.1109/MC.2004.2

Wool, A. (2009). Firewall Configuration Errors Revisited. DOI: 10.1.1.157.1615

World Bank. (2015). Chapter 3: Thinking with Mental Models. World Development

Report 2015: Mind, Society, and Behavior. Washington, DC: World Bank.

DOI: 10.1596/978-1-4648-0342-0.

Xu, T. & Zhou, Y. (2015). Systems approaches to tackling configuration errors: A

survey. ACM Comput. Surv. 47, 4, Article 70 (July 2015), 41 pages. DOI:

http://dx.doi.org/10.1145/2791577

Xu, T., Pandey, V., & Klemmer, S. (2016). An HCI View of Configuration Problems.

Project Report for Human-Computer Interaction course. University of

California. Available at: http://arxiv.org/pdf/1601.01747.pdf (Accessed: 11

April 2016).

Xu, T., Zhang, J., Huang, P., Zheng J., Sheng, T., Yuan, D., Zhou, Y., & Pasupathy,

S. (2013). Do Not Blame Users for Misconfigurations. SOSP’13, Nov. 3–6,

DOI: 10.1145/2517349.2522727

Yin, Z., Ma, X., Zheng, J., Zhou, Y., Bairavasundaram, L. N., Pasupathy, S. (2011).

An empirical study on configuration errors in commercial and open source

systems. SOSP '11. 159-172. DOI: 10.1145/2043556.2043572

York, D. (2015). HBO NOW DNSSEC Misconfiguration Makes Site Unavailable

From Comcast Networks (Fixed Now). Available at:

http://arxiv.org/abs/1608.04999
https://darrenjw.wordpress.com/2011/11/23/lexical-scope-and-function-closures-in-r/
https://darrenjw.wordpress.com/2011/11/23/lexical-scope-and-function-closures-in-r/
http://dx.doi.org/10.1109/MC.2004.2
http://arxiv.org/pdf/1601.01747.pdf
http://dx.doi.org/10.1145/2517349.2522727
http://dx.doi.org/10.1145/2043556.2043572

77

http://www.internetsociety.org/deploy360/blog/2015/03/hbo-now-dnssec-

misconfiguration-makes-site-unavailable-from-comcast-networks-fixed-now/

(Accessed: 11 April 2016).

Zibran, M., F. CHI-Squared Test of Independence. Department of Computer Science

University of Calgary, Alberta, Canada.

Appendix A

http://www.internetsociety.org/deploy360/blog/2015/03/hbo-now-dnssec-misconfiguration-makes-site-unavailable-from-comcast-networks-fixed-now/
http://www.internetsociety.org/deploy360/blog/2015/03/hbo-now-dnssec-misconfiguration-makes-site-unavailable-from-comcast-networks-fixed-now/

