
Developing a Phishing Learning
and Detection Tool

Stephen Waddell

MInf Project (Part 1) Report
Master of Informatics
School of Informatics

University of Edinburgh

2019

3

Abstract
In this project, I outline the design of a Phishing Learning and Detection tool (Catch-
Phish) focused on detecting malicious URLs. This incorporates existing approaches to
tackle phishing and employs embedded training to protect and inform users about this
increasing security concern.

As part of the first year of this project, the intention of this work was to the design the
CatchPhish system with a focus on user interaction. Research was conducted through
user interviews to understand how much knowledge users have of malicious phishing,
and find the ideal point of user interaction. As part of the design of the tool, an algo-
rithm to analyse URLs was developed and subsequently evaluated by an expert in the
field.

The completed system was evaluated and found to be usable. Users across each of the
conducted studies highlighted a consistent demand for such a tool. This lays ground
for further work to complete the implementation of the decision-making aspects of the
tool, and establish the efficiency and accuracy of the system.

4

Acknowledgements

First of all, I would like to thank my supervisor Kami Vaniea for all her support and
encouragement throughout this project.

I would also like to thank Kholoud Althobaiti for her continual feedback and thank
her, along with Sara Albakry, for their participation in the expert evaluations.

A particular thank you to Rusab Asher who helped with the interview analysis, and for
his encouragement throughout the project.

To all the participants who participated in one of the many user studies conducted
throughout the project - this would not have been possible without you - thank you.

Contents

1 Introduction 9
1.1 Overview . 9
1.2 Project Specification . 10

1.2.1 Results and Accomplishments 10
1.3 Report Structure . 11

2 Phishing 13
2.1 Phishing Variations . 13

2.1.1 Spear Phishing . 14
2.2 Phishing Delivery Vehicles . 14

2.2.1 Attachments . 15
2.2.2 Uniform Resource Locators (URLs) 15
2.2.3 Example of a URL Attack 16

2.3 Common Indicators of Phishing Attacks 16
2.3.1 Email Specific Indicators . 17
2.3.2 Common URL Manipulation Tricks 18
2.3.3 Domain Indicators . 18
2.3.4 Page Indicators . 19

2.4 Other Phishing Difficulties . 19
2.5 Summary . 20

3 Related Work 21
3.1 Usable Security . 21
3.2 Theoretical Phishing Research . 22

3.2.1 Automated Phishing Detection 22
3.2.2 Automated Security Indicators 23
3.2.3 Training Users . 25

3.3 Existing Anti-Phishing Tools . 26
3.3.1 Further Anti-Phishing Tools 26

3.4 Summary . 27

4 Requirements Gathering 29
4.1 Initial Concept Design . 29

4.1.1 Browser Choice . 30
4.1.2 Identifying the Userbase . 30

4.2 Interviews . 31

5

6 CONTENTS

4.2.1 Method Selection and Reasoning 31
4.2.2 Methodology . 32
4.2.3 Results . 34
4.2.4 Likelihood of Using the Tool 36
4.2.5 Recommendation . 37

4.3 Requirements . 38
4.4 Summary . 39

5 Design 41
5.1 Prototyping the User Interface . 41
5.2 Back-end Design Proposal . 43

5.2.1 Selecting the Algorithm Type 43
5.2.2 Decision-Making Algorithm 44
5.2.3 Malicious Heuristics . 45
5.2.4 Safety Thresholds . 46
5.2.5 Data Sources . 47

5.3 Expert Design Evaluation . 47
5.3.1 User Interface . 47
5.3.2 URL Decision-Making . 48
5.3.3 Evaluation of Design Proposal 48

5.4 Final Design . 49
5.5 Summary . 49

6 Implementation 51
6.1 Project Timeline . 51
6.2 System Overview . 52

6.2.1 Components and Interaction 52
6.2.2 Choice of Technologies . 52
6.2.3 Understanding Chrome Extensions 55

6.3 Extension Infrastructure . 56
6.3.1 Content Script . 56
6.3.2 Background Script . 57

6.4 Front-end and User Interaction . 58
6.4.1 Research Interface Implementation 59
6.4.2 Choice of Extension UI Elements and Intervention 62
6.4.3 User Support and Understanding 65

6.5 Decision-Making Server . 67
6.5.1 Implemented Heuristics . 69
6.5.2 Unshorten Links . 70
6.5.3 Chrome Extension API . 70

6.6 Additional Considerations . 71
6.6.1 Efficiency and Security . 71

6.7 Summary . 72

7 Evaluation 73
7.1 Study Preparation . 73
7.2 Demonstration with System Usability Scale 74

CONTENTS 7

7.2.1 Methodology . 74
7.2.2 Results . 75

7.3 Think Alouds . 76
7.3.1 Preparation . 76
7.3.2 Methodology . 76
7.3.3 Results . 77

7.4 Expert Evaluation . 78
7.4.1 User Interface . 79
7.4.2 Implemented Backend . 79
7.4.3 Further Advice . 80

7.5 Discussion . 80
7.5.1 Requirements of the Tool . 81

7.6 Summary . 81

8 Further Work 83
8.1 Decision-Making Components . 83
8.2 User Interface Improvements . 84
8.3 Longitudinal Study . 84
8.4 Summary . 85

9 Conclusion 87
9.1 Overview . 87

Bibliography 89

A Interview Materials 95

B Interview Results 105

C Additional Paper Designs 113

D Phishing Heuristics Proposal 115

E System Usability Scale Survey 135

F Think Aloud Materials 137

G Think Aloud Data Feature Codes 143

H Think Aloud Qualitative Data 145

Chapter 1

Introduction

1.1 Overview

Phishing emails are a routine occurrence for anyone with email in the Internet age.
Masking themselves as reputable companies such as Paypal, using devious means
such as the use of company logos and standards, malicious actors, again and again,
attempt to lure in individuals from a wide range of technical shades. Phishing ranges
extensively in sophistication: from mass-produced misspelt requests for overly specific
details to sophisticated spear phishing attacks focused on the details of the individual.
The ability of phishing attacks to innocuously harvest your private credentials can
leave you mercilessly exposed in our data-intensive world. All it takes is for a user
to make the critical mistake of clicking on a single malicious link. Through a simple
mistake, a user exposes themselves and their data from anything from drive-by down-
loads, cross-site scripting attacks to the harvesting of their details in an innocuous web
form.

Phishing has two main delivery vehicles: emails and websites. Emails being the fore-
most of these, are most classically associated with phishing. These often include ma-
licious URLs to direct users towards maliciously crafted content. By obfuscating the
real destination of a URL through a few simple manipulations, users can quickly find
themselves on unknown and insecure ground. Therefore it is vital to tackle this mas-
sive worldwide problem. In the United Kingdom (UK) alone, phishing is expected
to cost the UK economy as much as £280 million per year [42]. This is encouraging
companies such as Google [27] to look into the future of Uniform Resource Locators
(URLs) themselves [84].

To tackle the problem of phishing, my project has been focused on tackling the mali-
cious URLs included in them as “more than 75% of phishing mails include malicious
URLs to phishing sites” [16]. Existing techniques to handle URLs involve automated
phishing detecting (mainly employing machine learning techniques), user training (the
best results of which are gained from embedded training) and automated security indi-
cators (providing information to help the users decide). I aim to create a system which
incorporates aspects of these techniques, to inform and protect users from malicious

9

10 Chapter 1. Introduction

phishing.

1.2 Project Specification

To solve this problem, I have been building a user-focused tool which seeks to catch
problematic URLs before they reach their full malicious potential. The tool that I have
developed is a Phishing Learning and Detection tool, built for the Chrome platform in
the form of an extension called Catch-Phish. It classifies URLs into one of three safety
states using a combination of natural language processing and knowledge acquisition,
before providing users with the necessary information to understand how this classifi-
cation was derived. It helps to train them in URL safety by presenting this information
at critical points of intervention.

The primary motivation behind this project is the lack of tools which purposefully
prevent users from visiting malicious URLs and more crucially inform them of why
they have been prevented. This is important due to the significant average availability
time of phishing links, which according to Canova et al. [11], was 32 hours and 32
minutes in the first half of 2014. Machine learning techniques are very successful in
matching established patterns of URLs but not as successful at identifying new URL
variations, which means malicious URLs can go sometime before being detected. The
lack of user knowledge of phishing also encourages users to ignore warnings when
presented to them. In the UK for example, only 72% of technology users had heard of
phishing as a term despite 95% of organisations saying that they train end users [60].
For these reasons, it is important to train users to detected phishing themselves.

As the first year of my Minf project, the focus this year was working on both designing
the tool and implementing and evaluating the means for how the user would interact
with the tool. The project has involved a welcome and generous amount of advice
from a PhD student who is an expert in phishing, computer security and URLs and is
working on a similar project. This student has produced a lot of the research referenced
in this report. However, I make a clear distinction between the work done by myself
and this student throughout the report.

1.2.1 Results and Accomplishments

As part of this project, there were several significant pieces of work which are outlined
below:

• Completed a literature review of the subject

• Conducted extensive user interviews to find the ideal point of user intervention
for the tool

• Developed an algorithm to classify each URL with one of three designed status
values

1.3. Report Structure 11

• Developed the infrastructure of the tool itself including implementing the custom
extension user interactions

• Implemented a detailed URL analysis user interface based on current research,
using modern web technologies

• Extended the user’s visited webpages with the dynamic insertion of visual ele-
ments to represent the status of each link in the page

• Implemented the web redirection features with the real-time analysis of user web
traffic

• Used secure programming techniques to incorporate the ability for the users to
have personal URL safety lists securely

• Evaluated the overall usability of the finished tool using a triangulated approach

Throughout each of the user studies I conducted within this project, there has been a
strong demand for the features outlined in the tool, before and after their implementa-
tion. The completed tool was regarded in the final evaluations as being easy to use, with
the implementation of URL analysis user interface being particularly commended.

1.3 Report Structure

This report covers the progress I made this year. The remaining eight chapters are
structured as follows:

Chapter 2: presents an overview of phishing and explains common indicators of
phishing and malicious URLs and how these are useful to detect them.

Chapter 3: presents previous approaches to phishing, their advantages and how they
differ compared to my approach.

Chapter 4: discusses the gathering of requirements for the system including the inter-
views conducted for this purpose.

Chapter 5: describes the iterative design process used to design the tool based on
the required requirements.

Chapter 6: details how I built the system, including the features included in the tool
and the final design.

Chapter 7: critically evaluates the overall usability of the system using a triangulated
evaluation approach and discusses the results in relation to the design requirements
established in Chapter 4.

Chapter 8: discusses the further work required for this project.

12 Chapter 1. Introduction

Chapter 9: conclusion and overview of the project so far.

Chapter 2

Phishing

As mentioned in the introduction to this report, phishing is a means of trying to acquire
private and confidential details from people, by luring them through deceptive means.
This can often occur as a result of a malicious actor pretending to be an established
company or organisation that the users might be familiar with. Phishing attacks are
deployed through a number of different means including emails and phishing web-
sites. Links are the most common means of directing users to malicious resources, but
attachments in emails can also be used to target users computers more directly.

2.1 Phishing Variations

There are several variants of phishing, [69] which range in sophistication, but are each
used to exploit potential victims. Some of these phishing variants include:

• Deceptive Phishing - is the most common type of phishing scam, by which fraud-
sters impersonate a legitimate company and attempt to steal peoples’ personal
information or login credentials. This often hinges on how closely the attack
email resembles a legitimate companys official correspondence, and is largely
deployed on-mass to multiple recipients in a blanket approach.

• Spear Phishing - is a more individually focused phishing attack, personalised
to each recipient with details such as their name, position and company. The
primary aim is to trick the recipient into believing the attacker has a personal
connection with them.

• Whaling - a spear phishing attack focused on attacking, or “harpooning”, a CEO
to capture their private details in a similar way - by mimicking a sender whom
the victim knows. The content of the email is relevant to the victim, intended to
not trigger any suspicion from the victim.

• Pharming - exploits issues in existing Internet infrastructure, rather than baiting
victims like other phishing attacks. It achieves this by exploiting the Domain
Name System (DNS) used within the Internet to convert alphabetical website

13

14 Chapter 2. Phishing

names to their related Internet Protocol addresses (which are used to specify the
location of computing devices on the Internet). By poisoning a popular DNS
cache, attackers can direct users trying to connect to genuine sites to their own
malicious ones, which can be very difficult for users to detect.

• Online Drive phishing - some attacks are specialised according to an individual
company or service, such as the Dropbox [19] and Google Drive [28] services.
These are highly popular file storage backup services with millions of users re-
spectively. Phishing attacks aim to exploit users of these systems by luring them
into entering their credentials into similar looking sites. This can give them ac-
cess to all of a users files, documents, spreadsheets for instance.

Spear phishing for instance, is one variant of phishing that even those with extensive
training, struggle to identify.

2.1.1 Spear Phishing

Kang Leng Chiew et al. [13] outline the goal of spear phishing as being the same
as deceptive phishing: to lure the victim into clicking on a malicious URL or email
attachment, so that they will hand over their personal data. Spear phishing is espe-
cially commonplace on social media sites like LinkedIn [40], where attackers can use
multiple sources of information to craft a targeted attack email.

Spear phishing has become the popular choice (Nagunwa, 2014)[44] by phishers over
the conventional phishing using mass and random email phishing. This popularity
is because of the high success rate compared to the more conventional phishing ap-
proaches (Krombholz et al., 2015)[39]. The success rate of spear phishing is high
because internet users will normally trust emails from the website of an organisation
that they have used before or have an account with [13].

Spear phishing can expose victims to further attacks such as an Advanced Persistent
Threat (APT): a long-term low-profile attack that infiltrates a specific target of inter-
est and uses vulnerability exploits or malware to achieve a set of objectives such as
espionage or sabotage (Symantec, 2011)[66].

53 percent of IT and security professionals who responded to the Wombat survey re-
ported their organisations have experienced these more advanced, targeted spear phish-
ing attacks in 2017 [60]. Therefore spear phishing is an example of the increasing
amount of sophisticated phishing attacks that users regularly face. It can require a lot
of technical skill to understand how to avoid these attacks.

2.2 Phishing Delivery Vehicles

Emails are often regarded as the main delivery vehicle of phishing attacks. The typical
form of these attacks involve a spam email appearing to be from a reputable company
that the user might be familiar with. With 54.6% of all email being spam, it can be

2.2. Phishing Delivery Vehicles 15

hard for users to differentiate the malicious phishing emails from the more innocuous
marketing attempts, with the average user receiving around 16 malicious emails per
month [65]. Malicious emails can be caught by the users’ email clients or spam filter,
but this has a varying effectiveness [83, 14, 64] as it is often based on established spam
email patterns. This means that some malicious email are still able filter passed this
protection.

Phishing attacks can, however, be spread through any online communications means
that allow for the use of links or attachments. For instance, social media sites are an-
other example means of phishing attacks. This can occur innocently, such as in the
case of a family member spreading what they think is a great deal site for cheap holi-
days - and infecting the family with malicious software. These social media sites can
then be hijacked to help spread these links further, by the harvesting and exploitation
of a victim’s credentials, which can cause a further loss of personal information to an
increasing number of victims.

2.2.1 Attachments

An email attachment is a computer file sent along with an email message. One or more
files can be attached to an email message, and be sent along with it to the recipient.
This is typically used as a simple method to share documents and images [82]. These
can use however we be used as a vehicle for phishing attacks. By downloading one of
these files, you could be downloading malicious software attached to it which can be
used to further exploit your system, according to the attacker’s original intention. In
particular, invoices purporting to be from reasonable companies, account for 15.9% of
all malicious attachments according to [65].

2.2.2 Uniform Resource Locators (URLs)

A URL is a Uniform Resource Locator, which is often colloquially called a web ad-
dress or link, and is used as a reference to a web resource. A URL specifies a web
resource’s location on a computer network and a mechanism for retrieving it. URLs
are a very flexible and adaptable technology, even though they most commonly used
to reference web pages. They are also used for multiple other purposes such as file
transfer (ftp), email (mailto) and database access (JDBC).

They are able to be used for many purposes due to their flexible structure, outlined in
Figure 2.1.

URL adaptability means that they require expertise to truly understand them, even
though their presence is ubiquitous throughout the internet. Internet Users, however,
have been shown to be lacking this knowledge, having difficulty with reading URLs
[5, 4, 11, 62]. Even after having extensive training in the subject users can still fail to
notice visually deceptive manipulations [18]. This leaves internet users susceptible to
attack without persistent or accessible URL knowledge.

16 Chapter 2. Phishing

Figure 2.1: URL structure example [5]

2.2.2.1 URL Manipulation Attacks

URLs are used in emails and beyond for the purposes of Phishing attacks. Attacks
which involve the manipulation of URLs are known as URL manipulation attacks, and
can occur within both phishing and other attacks which employ URLs.

URLs are more commonly used in phishing attacks than malicious attachments. The
latest Quarterly Threat Report by proofpoint highlighted: “the pendulum of malware
delivery mechanisms in email continued to swing towards URLs; malicious URLs
outnumbered attachments ... by over 370%.”[55]. This is why the primary focus of
this project is on URLs due to their greater use within and without phishing attacks,
and thus the wider scope of the project to help reduce phishing and URL manipulation
attacks as a result.

2.2.3 Example of a URL Attack

For example, suppose a victim clicks a malicious phishing link presented to them on a
seemingly familiar website such as Facebook, such as the link below:

h t t p : / / www. f a c e b o o k . p r 0 f i l e . com . sq / k23IDCWs

An example attack such as the one discovered by Wang Jing [67] might occur; on click-
ing a malicious link, a popup window from Facebook could suddenly appear and ask
the victim would to authorise the app. If the victim chooses to authorise the app, the
popup could gain access to the victim’s personal sensitive information through Face-
book: such as the user’s email address, birth date and contacts. Worse still, in case
the user has consented to giving the app greater privilege, the attacker may possibly
control and operate the users account. Even if the victim does not choose to autho-
rise the app, he or she will still get redirected to a website controlled by the attacker.
This could potentially further compromise the victim [67]. One of the causes of the
described vulnerability is a lack of validation of the redirect URL.

2.3 Common Indicators of Phishing Attacks

There are multiple indicators of phishing attacks, but these can depend on the type of
phishing delivery vehicle used. An indicator is used as a gauge or measure of whether

2.3. Common Indicators of Phishing Attacks 17

a phishing attack has a occurred, and examples of these are discussed in the subsequent
sections of this chapter.

2.3.1 Email Specific Indicators

There are a range of email specific indicators depending on how sophisticated the
attack is. For example, looking at the email sender and matching that with known
email or details of the company might be useful for lower quality deceptive phishing
emails. However, more sophisticated spear phishing attack can employ tactics such
as email spoofing [59], so that the message appears to have originated from a non-
malicious source.

In addition, a common email specific indicator is to use a strong or threatening tone to
make the users concerned about the impact of the email. This is often in combination
with a presented time limit to expedite their use of the accompanying link or attach-
ment. For example, “your account will be suspended within 24 hours unless you verify
your account details accessed by clicking here”. An example of this can be seen in
Figure 2.2.

Figure 2.2: Phishing email example [51]

Lower quality emails also include indicators that people are more familiar with. For
instance, poor spelling and grammar are common indicators. This is in stark contrast
to the emails from very large companies such as PayPal, who typically spend a lot of
time vetting their email content. In some cases, other languages can be used in the

18 Chapter 2. Phishing

email along with poor or low-quality images. This is often a clear indicator to users
that they are not receiving a link from the intended company.

2.3.2 Common URL Manipulation Tricks

URLs can be manipulated in multiple ways in order to trick users. As discussed in
section 2.2.2, these manipulations can often be difficult to identify, even for those with
extensive training.

One common set of tricks is called “mangle”: this is where a brand or company name
has letter substitution, misspelling or non-ASCII characters that appear to be similar
to their English counterparts [5]. The use of non-ASCII characters means this is very
difficult to be picked out at a brief glance and since users do not typically spend a while
focusing on URLs in the page [72], these would be hard to detect.

URL manipulations can also occur to confuse the user intentionally. For instance, a
common set of tricks is called “obfuscate”. These tricks aim to confuse the user by
substituting the URL domain with an IP addresses in place of the domain, or shortened
links [5]. Link shorting, for instance, does not always have to have a malicious intent,
though. Service provided by companies such as Bitly [8], can help to reduce the length
of URLs for users to more easily sharing for example.

These manipulation tricks are difficult to avoid and often need a lot of experience
when trying to understand them. These tricks could be a core focus in developing
a theoretical anti-phishing tool, and this tool could specifically allow users to more
clearly understand these tricks.

2.3.3 Domain Indicators

There are a number of phishing indicators which are specifically related to the domain
name of a site. A domain name is a label which identifies a network domain - a unique
group of computers that form part of a central administration or authority. These do-
main names are managed by the Domain Name System (DNS). The domain of a site
can be embedded in a site’s URL, as can be seen in Figure 2.1 on page 16.

One of the indicators of phishing related to domains is the age of the domain itself.
Therefore the days of domain registration can be looked at, in information stores such
as the WHOIS [80] domain database. “A Whois domain lookup allows you to trace the
ownership and tenure of a domain name. Similar to how all houses are registered with
governing authority, all domain name registries maintain a record of information about
every domain name purchased through them, along with who owns it, and the date till
which it has been purchased.”[80]

As phishing sites tend to be newly created, information stores such as WhoIs can be
queried to get the creation date of the website. This can then be evaluated against
thresholds for the typical creation date of phishing sites.

2.4. Other Phishing Difficulties 19

Therefore domain indicators are an important indicator of whether a site is a phishing
site. Since these indicators are not apparent to the user when inspecting sites, these
indicators could be highlighted to better inform users.

2.3.4 Page Indicators

Page features use information about pages which are calculated using reputation rank-
ing services. These are some of the most useful indicators of a URLs safety if they
show a site is popular, but can equally be an indicator of phishing where a site is
shown to be unpopular. In this sense, they give information about how reliable a site
is.

For instance, one page indicator is the relative popularity of a website which can be
determined by looking at information by using Alexa Top Sites [3] to get a rank of the
most popular domains [41, 86]. Popular sites tend not to be phishing sites since users
do not tend to revisit a phishing site. In this sense, the highly popular sites in a list such
as Alexa’s Top Sites can be used as a whitelist; whereas the most unpopular sites from
this list (or no inclusion in the list) can be taken as being a malicious site.

Therefore by highlighting these page indicators to users, and using this information
in the calculation of automated security indicators, a phishing detection tool could
increase the users’ contextual knowledge of phishing.

2.4 Other Phishing Difficulties

Another common trick employed in phishing is to make the displayed text for a link
suggest a reliable destination when the link actually goes to the phishers’ site. This
is also known as covert redirect or cloaking. Many desktop email clients and web
browsers will show a link’s target URL in the status bar while hovering the mouse
over it - called a mouseover. This behaviour may in some circumstances be overridden
by the phisher [12] which can lead to users visiting malicious sites without their prior
awareness.

A further attack that can be employed against a victim is a cross-site scripting attack.
This involves an attacker using the flaws in a trusted website’s own scripts against
the victim. These types of attacks are particularly problematic because they direct the
user to sign into a genuine service such as a bank, where everything from the web
address to the security certificates appear correct. In reality, the link to the website
is specifically crafted to carry out the attack, making it very difficult to spot without
specialist knowledge. This type of attack was used in 2006 against PayPal [45].

A drive-by download is an additional example of an attack that can occur as a conse-
quence of a phishing attack. This refers to the unintentional download of malicious
code to a target’s computer which leaves them exposed to further attacks. Drive-by-
download malware often uses small pieces of code designed to slip past simple de-
fences and go largely unnoticed. This code is often very simple as its main purpose

20 Chapter 2. Phishing

is only to contact another computer to introduce the rest of the malicious code. Often
the malicious code is distributed by compromised websites, so simply visiting a site
without the appropriate security can leave user exposed to this attack [38].

2.5 Summary

This chapter underlines what phishing is, and provides an explanation of the different
vehicles used to deliver phishing attacks. It discusses the indicators used to identify
these attacks and the depth of technical knowledge that is often required in order to
understand what constitutes a phishing attack. Further attacks that can occur as a result
of phishing are outlined as an example of the potential sophistication of these attacks.

Chapter 3

Related Work

The chapter looks at related work to the phishing tool and discusses how the tool
expands and builds on this work through the course of the project.

3.1 Usable Security

Usable security as a field focuses on the juncture between human-computer interac-
tion and computer security, with a focus on the human factors of computer security
and privacy. Researchers working in the computer security field often produce neces-
sary security tools intended to protect users, but these can have a bounded usefulness
for actual users due to their limited usability. An example of this is the PGP 5.0 en-
cryption study [79] in which a selection of computer science students were not able
to adequately encrypt an email using the given security tool. This demonstrates the
limited benefit in creating a security application that is not usable. Papers such the one
presented by Cormac [32] expand on this, by discussing how the creation of further
tools, and specifically the security terms associated with them, can actually lead to
users’ confusion by increasing the amount of terms they need to be familiar with.

An understanding of how users interact with computer security systems is a central
aspect of Usable security. This is the focus of the Human-in-the-loop framework pro-
posed by Cranor [15], which discusses how security systems should strive to remove
humans from security systems wherever possible, due to their general unreliability.
However, where they cannot be removed from the system design, security failures
should be analysed by system engineers to allow users to understand and engage with
the security system in the most effective way.

This should not, however, lead to a perception that users are somehow the enemy of
secure computing systems. Adams et al. [1] found that whilst users do indeed compro-
mise computer security mechanisms, this is “often caused by the way in which security
mechanisms are implemented, and user’s lack of knowledge”. Instead, through ade-
quate training, users can be useful components of a security system as discussed by
Pfleeger et al. [52]. This is particularly important as humans are often more capable at

21

22 Chapter 3. Related Work

spotting unique and unknown patterns than machines.

An understanding of usable security is necessary to effectively design a security system
if it is to be usable for end users. For instance, a security system such as phishing learn-
ing and detection tool would have to consider the human-in-the-loop in order to design
a usable system which prevents users from being affected by malicious phishing.

3.2 Theoretical Phishing Research

There are many different approaches to tackling phishing. The common element be-
tween these approaches is the analysis of phishing indicators. The main difference
between these approaches is how they use this analysis: whether that is user train-
ing or calculating the likelihood of the URLs being malicious using machine learning
techniques.

The amount of user interaction these approaches have is varied. For example, ap-
proaches involving automated phishing detection may have no user interaction what-
soever. Approaches such as these which have limited user interaction, deprive the user
of learning opportunities. These learning opportunities are needed to bridge the mali-
cious URL availability window - the amount of time it takes for a URL to be caught
by an automated detection system. According to Canova et al. [11], this time window
was around 32 hours and 32 minutes in the first half of 2014. This means that users
can be affected by these malicious URLs during this time, before general security tools
can remove or block them. This availability window can be caused by the failure of
these automatic approaches to detect newly created URLs which do not conform to
existing patterns. The only defence in this case are the users themselves. Therefore
it is important users have the appropriate knowledge to protect themselves from the
threat of malicious phishing URLs.

Each of the approaches to tackle phishing discussed in this chapter has it’s unique
advantages and disadvantages. The goal of my work is to understand how the benefits
of these approaches may be combined into a single phishing learning and detection
tool.

3.2.1 Automated Phishing Detection

Automated phishing detection is an approach favoured by large organisations and com-
panies. This approach employs machine learning techniques to analyse URLs to dis-
cern if they are malicious.

These techniques can be used to populate stored blacklists. These are extensive databases
of phishing links which are known to be dangerous. These databases are often main-
tained independently by companies, with some publicly available for querying. One of
the significant benefits of using blacklists is the reduction in computation time needed
to process whether each encountered URL is malicious. Blacklists tend to be highly
reliable when considering the URLs present in them. Since they are not complete lists

3.2. Theoretical Phishing Research 23

of all malicious URLs, they can not be fully relied on. This means that URLs not
present within blacklists still need to be analysed.

The accuracy of automated approaches is greatly improved by access to large datasets.
For instance, Google utilise the massive datasets they have access to from their search
engine to produce a classifier that works on noisy data with a 90% accuracy [78]. Their
approach utilises URL feature extraction and the fetching of page content to match the
defined heuristics for their classifier.

The main concern with these automated approaches, particularly from a usability per-
spective, is that these approaches can result in false warnings that decrease user confi-
dence in the effectiveness of the prevention systems. This is because such systems do
not have a 100% accuracy. The false warnings that occur as a result, can cause users to
ignore future warnings [61]. Therefore automated approaches such as machine learn-
ing are not effective as a singular indicator of phishing attacks.

3.2.2 Automated Security Indicators

A further approach to tackling phishing, is by using automated security indicators. The
basis of the automated security indicator approach is to feed information about security
practices back to the user so they can make decisions about the security status itself.
The idea behind this approach is that users can pick up on information that machines
cannot. The automated security indicator approach can incorporate features such as
informative mouseovers or the highlighting of important information for the users.

An example of this is presented in the Faheem slackbot [5], which breaks down a URL
into its various components and presents this information to users. This tool presents
the URL information to users in a standard format with contextual information about
what each URL component might mean. The concept underlying this tool, which
is indicative of the general approach, is that this allows users to make an educated
decision about the safety of the URLs analysed by the tool.

A further example of automated security indicators is given in the URL report research
[4]. This research presents a detailed breakdown of how a URL’s different components
can be presented to a user. This allows for extensive contextual information about each
URL element, whilst highlighting the most important aspects of a given URL to a user.
The report was created with the use of focus groups in order to be an effective and use-
ful presentational tool. It breaks down the information about URLs into three primary
sections: summary, URL manipulation tricks and facts about the URL. For each fact,
there is a clear explanation of why that fact is significant. This is presented alongside
an example of the URL component itself, to make the connection between the fact and
URL component clear to the user. The report itself expands on the Faheem Slackbot
by including further information such as the level of encryption and the domain and
page popularity. This URL report has not been implemented as part of an existing tool.
A theoretical phishing detection and learning tool could incorporate this URL anal-
ysis design. This would be beneficial since this report has already been extensively
designed with user feedback.

24 Chapter 3. Related Work

Figure 3.1: Usable URL Report [4]

Established security toolbars such as Netcraft’s are an additional example of automated
security indicators. This tool is designed to present information about the quality of
the site to indicate to users it is phishing or not.

Figure 3.2: Netcraft extension interface [46]

These security toolbars are often not designed to convey information clearly to users,
and essential heuristics such as page site rank can be ignored by users as a result.
This can be due to a lack of contextual information explaining why this information
is important to users. Wu et al. [85] discuss the usability of these security toolbars in
their paper. Netcraft’s security toolbar, as seen in Figure 3.2 is one example included in
this paper. The paper itself raises future design principles for anti-phishing tools, drawn
from research into the usability limitations of the example security toolbars themselves.
The design principles suggest “active interruption like the pop-up warnings [are] far
more effective than the passive warnings” but they “should always appear at the right

3.2. Theoretical Phishing Research 25

time with the right warning message” in order to ensure user trust in the system.

Active interruption is another notable feature which could be included in a theoretical
phishing detection and learning tool. This could be used to prevent users from visiting
malicious websites in the first place, rather than just warning them of these sites. This
feature combined with a clear information breakdown of the URL components, as
outlined in the URL report, might make an effective tool for phishing protection.

3.2.3 Training Users

Training users is a critical approach of tackling phishing, as it can improve the ability
of users to make effective decisions when faced with phishing attacks. This touches
on Usable security fundamentals as users are often an under-considered element of
computer security. It is advised that were users cannot be removed from the application
loop; systems are designed to make information as clear as possible to them. This is
where training users can be beneficial.

There are multiple approaches to training users and many different tools designed to
help with this. Facets of ideal training approaches are: engaging the user, present-
ing relevant information to the subject and having clear learning objectives. Training
through the use of educational games is one example approach. This approach is of-
ten intended to engage the user by presenting information in fun environment. This,
however, is subject to the quality of the game. One common difficulty with this, and
training in general, is the user’s ability to retain information taught to them after some
arbitrary period of time. After learning new information, users tend to show increased
knowledge and skills on the subject immediately afterwards, but this is shown to dete-
riorate over time. This is a concern with computer security applications especially as it
is essential that users continue to have the knowledge and awareness that allows them
to adapt to threatening issues as they appear.

Studies related to the phishing area focused on training users include the NoPhish app
[11]. This is an app intended to teach users about phishing using informative pieces
of information. As a result of the longitudinal study included in the paper, they found
that users were more successful after the teaching, but their success rates dropped 5
months later when tested on the same material again.

A theoretical anti-phishing tool could inform users about the components of malicious
URLs, and the reasoning behind why these components are malicious. Where this
theoretical tool could focus, is on embedded training which is intended to help users
retain the taught information for a more extended period by continuing to teach them
at key moments.

3.2.3.1 Embedded Training

The aim of embedded training is to teach users in the moment they make an error,
about why that error has occurred. For instance, when users are making an error,

26 Chapter 3. Related Work

this type of training teaches them by presenting information to them about why these
errors have occurred. This helps to improve user retention times by creating memory
anchor points which help users recall the learned information when faced with similar
situations to the learning experience. For instance, Jerry clicks on a malicious URL
but is prevented from reaching it and presented with information that it has too many
sub-domains which indicates why this URL is malicious. In the future, Jerry is more
cautious about clicking on URLs and watches out for how many sub-domains are in
the URL.

One problem with embedded training, despite success rates, is that is is very hard to
deploy in real life situations. In corporate environments for instance, this is because it
is hard to set-up a scenario for embedded training where the employees do not know it
is occurring. The training therefore fails to train users appropriately as they adapt their
behaviour to the training environment. It is also difficult to create the environment in
which these kinds of training can occur without a lot of set-up and intervention into
typical user routines.

A theoretical anti-phishing tool could incorporate these elements by presenting infor-
mation to users about the mistakes they make when clicking on malicious URLs. The
tool could give users the choice of proceeding to the website regardless in the case that
it has made a mistake. By incorporating a feature such as a whitelist (a list of safe
sites) the accuracy of such a tool could be improved by allowing the tool to adapt the
user input, to correct situations when the tool has made a miss-classification.

3.3 Existing Anti-Phishing Tools

There are some existing anti-phishing tools. The majority of these are incorporated
into general computer security-focused software such as anti-virus software. This
means that their particular focus on the user on this topic is limited. These com-
prehensive software packages also tend to focus on providing the user with a sparse
amount of high-level information. This is designed to keep users engaged with the tool
by demonstrating its functionality whilst encouraging the users to continue to engage
with it. This is coupled with the fact that these tools are often paid for and the average
user tends to have limited knowledge of computer security in general.

Tools specific to chrome fall into a number of categories:

• general computer security extensions that are also incorporated

• tools build into chrome itself

• ad-blocker extensions

3.3.1 Further Anti-Phishing Tools

An example of an anti-phishing tool built into a web browser itself are the Google site
warnings, as can be seen in Figure 3.3. These are presented to prevent users from visit-

3.4. Summary 27

ing malicious sites, by using the information calculated as part of Google’s automated
phishing detection. When visiting links that are malicious, this warning can sometimes
be thrown to indicate that the subsequent site is malicious. This is useful as an inter-
mediary to prevent users from going to the site, and prevents them being immediately
affected by the malicious site. However, the usefulness of this warning is limited by
the accuracy of Google’s aforementioned classifier work. This can reduce users trust
in these warning and encourage them to ignore them.

Figure 3.3: Google site warning [29]

To improve on this approach, a theoretical anti-phishing tool could present the details
of why the user has been blocked to help users build an understanding of why they
have been blocked. Since the design for Google’s site warning is well known by users
of the Chrome browser, a theoretical anti-phishing tool could use a similar design to
keep this consistent with what users are already familiar with. This would help to make
the intention of this page clearer to potential users.

3.4 Summary

In this section, we covered information about the current approaches taken to tackle the
problem of phishing attacks. This chapter discussed how automated phishing detection
approaches can be limited by their inability to adapt to new URL patterns. A theoretical
phishing tool could improve on these approaches by presenting information to users at
key points to allow them to make informed decision on their own safety. One way this
was suggested, was the incorporation of embedded training into such a tool, to allow
users to retain their learning over a longer period of time. By providing information in
the form of automated security indicators at key points invention points - the hope is
this theoretical tool could help to reduce malicious phishing.

Chapter 4

Requirements Gathering

My goal is to develop a tool that informs users about and protects them from mali-
cious URLs, through web request interception. I anticipate this tool would work well
in a browser or application plugin. Designing such a tool involves the incorporation
of numerous sources of information: an understanding of Usable security, existing ap-
proaches of tackling phishing, and an understanding of secure programming methods.

This chapter outlines how the requirements for developing an explanatory anti-phishing
tool were gathered, alongside the design decisions for doing so.

4.1 Initial Concept Design

The issue that I am attempting to address is the fact that users do not know much
about malicious URLs, and the large amount of phishing attacks that can occur as a
result. The lack of effective tools to inform users about why a URL is malicious and
prevent users from being effected by them exacerbates this problem. Thus the research
question to which I aim to provide an answer to is:

How might we develop a phishing learning and detection tool that will protect from,
and inform users about, malicious URLs?

The initial concept of this project was to develop on the work of the Faheem slackbot
[5] by implementing a system which would be able to present the user with explanatory
URL information to help better inform their decisions around URLs. This was also
influenced by the work done by Volkamer et al.[72] to provide feedback to users in the
form of a mouse-over for each URL in an email. Their approach was designed to help
users make informed decisions before they click on a link. The idea was to build on
this research and develop a more comprehensive system on a platform which would
have a wider reach.

One of the key considerations was the ability to incorporate active intervention to pre-
vent the user being directed towards a malicious site. This was shown as a suggested
approach in the work of Yang et al. [86], which used a chrome extension to warn

29

30 Chapter 4. Requirements Gathering

users of malicious phishing. Their field experiment suggested an active intervention
approach could be incorporated into a future anti-phishing tool, as long as the user was
presented with an understanding of why they had been intervened. This complements
the inclusion of embedded training in such a tool by displaying this malicious URL
reasoning to the user at appropriate points of intervention. To implement such a sys-
tem, a web browser was considered as the best vehicle, since this is the primary way
of viewing graphical web pages. These web pages are linked to by other applications
who wish to display or access web pages for example [68]. This would mean that any
web request arising from the clicking of a URL from an application outside the user’s
browser should be able to be filtered by this system.

The work done in Section 3.1 to design an idealised URL display, also presented an
opportunity to be incorporated into a potential tool. As this pre-existing work has
already been evaluated with users, the incorporation of this display would have the
benefit of limiting the amount of design required to develop the tool.

As browser extensions are the primary means of extending the functionality of web
browsers, these were selected as the means to implement this system. This led to the
concept of an extension which would provide user feedback about each page’s current
URL in the omnibox (the box at the top of a browser which contains the current page’s
URL). Since it was pointed out that this approach would only be helpful for users who
have landed on a phishing site already, discouraging them from entering their details
perhaps, but not being able to tackle the issues that might occur with phishing sites
such as drive-by-downloads. This necessitated an expansion of the scope of the design
to incorporate all of the links on a page, before the user had clicked on them.

4.1.1 Browser Choice

The Chrome browser was chosen as the primary deployment vehicle of the tool because
it has largest market share of any currently used browser (62.5% globally). [73] This
means the tool as a greater reach, with an ability to benefit more users.

Developing for this browser is also well documented, and it includes clear official doc-
umentation and access [24]. The browser also had a wide range of inbuilt framework
API access, and importantly, access to a ’webRequest’ API [26] - which would allow
the processing of a users URL requests before they have visited the site. This easy ac-
cess to useful APIs was similarly the case for the Mozilla Firefox browser [43], when
comparing them both to other browsers, but this has a much smaller market at (6.3%).
Therefore this presented the Chrome browser as the ideal development platform.

4.1.2 Identifying the Userbase

Identifying the ideal user base was a core consideration of the development of this tool.
As discussed in chapter 2, phishing is a ubiquitous problem which affects users of all
technical backgrounds. Whilst deceptive phishing attacks are more easily detected by
users of above average technical skill, this user group are as similarly susceptible to

4.2. Interviews 31

increasingly popular attacks such as spear phishing are. Due to their ability to detect
low quality phishing attacks, those with above average technical skill can be over-
confident in their knowledge of phishing even without having a purposeful education
in the subject, such as indicated by the interviews outlined in this chapter. This can
subsequently increase these users susceptibility to these attacks [76].

A major consideration of mine in this identification involved considering the body of
work I wished to incorporate into the design of the tool. Specifically the work on the
URL report by [4], focused its design on above average technical users. This rea-
sons behind this build on the research done to demonstrate how technical knowledge
disseminates itself among the wider population. These users, with above average tech-
nical, are most likely to be asked about and share their knowledge with users with less
adequate technical skills [77, 54, 57]. This means that targeting this user population
allows a wider benefit to be shared to the wider population as they all benefit from the
education of this group.

This was my primary motivation when choose above average technical users as the
main user-base of the tool. Whilst the tool might intuitively be targeted towards those
with no experience of phishing, the large amount of technical knowledge required to
fully understand the workings of sophisticated attacks limit the ability of the tool to
attract these users.

4.2 Interviews

The necessity for the user to get feedback on every URL on the page, provided the
basis of my research to find the ideal point of user interaction: what information would
be required for the user and how it would be presented to them, and what they would
like to see this on.

The main goal of the interviews was to find these interaction points, such that the users
would be happy using the tool in their own lives. The interviews also focused on what
might be useful to the user given the user interface options available within a chrome
extension.

The secondary goal of the interviews was to understand how much knowledge users
have on the topic and provide explanations. This was to ensure each participant had a
shared basis of knowledge in order to contribute to the discussion of the design.

4.2.1 Method Selection and Reasoning

The purpose of choosing interviews as a research method was to get more focused
feedback from a user level. By being able to ask users direct questions on the subject,
I could build a depth of understanding as to what user’s might mean about a subject.
This was very useful at the design stage of the project.

32 Chapter 4. Requirements Gathering

Since the interviews also included the explanation of information as well as the gath-
ering of it, this meant that this was a better choice than a survey - which would have
meant that the users would have to read somewhat of an essay to get information. It
would also allow me to further question users to explain their previous answers.

4.2.1.1 Participants

Since the idea of the interviews is to better understand how the userbase interact with
the tool, the participants included in the study were drawn from the same criteria -
people with above average technical skill.

We separated our participants according to computer security, to detect if there were
any trends withing participants view of the application relative to their declared experi-
ence. Therefore all of our participants had above average technical skills with a mixed
range of computer security experience.

4.2.2 Methodology

The interviews themselves having varying levels of structure depending on the topic.
The interviews were scripted to ensure information given to participants was the same
across interviews. Since the participants were giving some personal data, they were
also asked to fill in a consent form. Both the script and consent form can be found in
Appendix A.

Since I had little knowledge on how much the participants knew about the Phishing
and URL terms, the first portion of the interview was dedicated to explaining the these
terms. A structured approach was taken to ensure that the participants were familiar
with the terms and context before we reached the User Interaction portion of the inter-
view. The Phishing and URL portion of the interviews was structured to ensure that all
of the participants had a consistent basis of knowledge.

To explain these terms, after being asked about their knowledge of the subject in gen-
eral, the participants were presented with a number of examples of each topic and
asked to give an explanation of the presented examples. Afterwards, they were then
told what they got right or wrong about each example. This was to help users’ give
more educated feedback on what they would like to see in the tool. This portion of the
interviews was also useful in analysing how participants approach each topic.

The third section of the interviews was the User Interaction portion and this was semi-
structured. This was intended to allow for further questions to be asked of the user to
explain what they mean. This consists of asking the user how they picture themselves
interacting with such a the tool from a top-down perspective: beginning with what they
think the priorities of such a tool would be for themselves, down to which combination
of user interface elements they would benefit from and how these could be presented.

4.2. Interviews 33

4.2.2.1 Protocol

An outline of the structure of the interview:

• Start with consent form

• Brief general interview questions to get participant information

• Overview of participant of what specifics are required

• Phishing understanding section

• URL understanding section

• Gained Knowledge test

• User Interaction section

• Thank the participant and offer informative talking Points

The Background section was used to gather information about the participant, so they
can be referenced and be classed as one of the three core user groups.

For both the Phishing and URL topic overviews, the participants were first asked for
their initial understanding of the respective term. They were then asked to analyse
images containing examples of the topic, and asked to give their opinion on whether it
the example was malicious or not. At the end of analysing the examples in topic, the
users were presented with the answers to the examples for that section.

The UI Interaction portion was intended to capture the users thoughts on the design of
the phishing detection tool itself. The users were asked a serious of questions intended
to understand what features they would like in such a anti-phishing tool. Since this was
a semi-structured portion, further explanatory questions were asked of the participants
to help better explain their ideas on the tool.

For the last question in the interview, participants were asked how likely they would
be to use the tool itself, and asked to explain why they choose their answer. This was
intended to get an idea of how many users would wish to use the tool, and if there were
any aspects that would have to be particularly focused on as part of the development.

The interviews were concluded by offering further information of phishing tips if users
wished. This was intended as a means of thanking the participant and giving them
something back for their experience.

4.2.2.2 Data

The final amount of participants in the study was 17, but the results of only 16 par-
ticipants were analysed as part of these interviews since one participant (P12) later
decided to reevaluate their estimation of their own technical skills. This lead to them
being outside the scope of the target participant group of the study, which meant their
results could not be included in the final analysis of the data.

34 Chapter 4. Requirements Gathering

Each interview lasted around one hour, depending on the individual participant’s en-
thusiasm for discussing the tool’s potential UI. The information from the interviews
was transcribed by myself, and an audio recording of the interviews was made to be
used as a further reference for information that the transcript had missed.

4.2.2.3 Analysis

Since many of the initial training section had clear finite answers, this allowed this
part of the process to have quantitative data, which could be evaluated. The qualitative
results of this approach were analysed by using basic statistical analysis.

From all of the parts, there was a lot of quantitative data which had to be analysed. The
decision was made to analyse this though open coding. This is the process of finding
meaning in qualitative data by labelling sections of the data with codes. These codes
are labels which summarise chunks of data - just based on the meaning that emerges
from the data. This occurred for each section of the interviews, which allowed us to
pick out key themes and trends for each section. After this process was completed, the
relationships between these open codes were identified to form themes which underline
trends in the data - a thematic analysis.

Due to the amount of transcripts to process, this analysis was completed with the help
of a friend, who helped with data entry and the final thematic analysis.

4.2.3 Results

The full results of the quantitative analysis and open coding can be seen in Appendix
B. The results of the study are summarised and discussed in the subsequent sections
for each topic covered in the interviews.

4.2.3.1 Phishing Understanding

Participants were largely able to detect the phishing emails and point out relevant in-
dicators, with the average success rate for phishing identification across users being
97.91%. Most participants focused on the quality of the email itself and many pointed
out the email address as a focus of their concerns. This is in line with Phishing rec-
ommendations, and participants that had no self-declared knowledge on these subject
were still able to point to these characteristics as a general aspects of the interview.
This may be due to the educational structure of the interview themselves - in that they
were provided with the definition before proceeding with the tasks.

What may require investigation in future work was participants focus on the current
relationship with and knowledge of the sender for the emails as an important aspect
of understanding and how this relates to their susceptibility to spear phishing attacks.
This was outside the scope of these interviews since the phishing section was focused
on deceptive phishing.

4.2. Interviews 35

4.2.3.2 URL Understanding

Participants on the whole largely knew the purpose of URLs, as demonstrated in B.5,
but had less of an ability to adequately read them.

The participants particularly struggled with detecting more difficult aspects of URL
reading, such detecting non-ASCII characters hidden within URLs. A significant num-
ber of participants were unable to understand shortened links well either. This suggests
participants need these aspects to be highlighted for them in particular.

The participants confusion around the buzzword questions for URL reading also sug-
gests some participants do not understand URLs well enough to detect the malicious
aspects of them. This is completed with many participants basing their answers on
the knowledge of the source, around 50%. Participants also had a number of miscon-
ceptions of URLs at times which were interesting, but may be related to the varied
cultural background, in line with the universities statistics, the participant pool was
drawn from.

Different strategies were employed by the participants depending on the URL. This
may be due to the nature of the questions themselves, with Figure A.4 being an exam-
ple participants would be unlikely to encounter normally.

4.2.3.3 User Interaction

Users generally wanted the tool to work before they visit a site, in that it works when
they click on a link, with many of them wanting it to focus on malicious sites. They
had a strong focus in incorporating active intervention into the tool.

They largely wanted this information to be presented with a dedicated intervention
page with some participants specifically requesting that this be unmissable (P11 - “it
should make a big noise so I don’t miss it”). Participants also strongly suggested a
traffic light reputation system for highlighting the status of the URLs. They were also
clear that the intervention page should give the details of why their routine had been
intervened, and some participants felt that these details should be clear and accessible
at any time.

When asked how participants would like to be presented with this information in the
form of a Chrome extension, participants had a variety of ideas of how and what should
be presented. A majority of participants, however, suggested the tool should incorpo-
rate link annotation shields to highlight the status of URLs, with a popup including
an information breakdown, which could be used to explain how this status had been
derived. They also requested a context menu entry to show a breakdown of the link
details for any link they may wish to analyse. The participants also had ideas for addi-
tional features: with one participant focusing on the ability to report URLs as part of
both a popup and a context menu entry. Some participants focused on the tool’s ability
to provide high level information about the site in general: through either an overall
information breakdown or a badge with a count of all the links in a page. Relative to

36 Chapter 4. Requirements Gathering

Figure 4.1: Thematic Analysis for Chrome extension User Interface elements

other UI elements, participants generally had no strong opinion on use of the badge
and the icon.

As for help information, participants thought it would be useful to have a guide dis-
played when they first installed the tool and also a tutorial page on how to use the tool.
Some made the further suggestion of having a learning page on URLs for further de-
tails on this topic too. They largely wanted this information to be presented as “only
pictures and text” with clarity and time both being recurring reasons for this. A small
number of participants felt they would not need such help features at all as they would
intuitively know how the tool works when it was first installed.

As a recurring number of participants wanted the tool to have minimal obtrusiveness in
their normal routines, as seen in the table B.7. This request for minimal obtrusiveness
by participants was closely associated with participants request to have a low false
positive rate and high accuracy with the tool. The interview participants diverged into
three main groups: those that wanted a lot of intervention, those that wanted minimal
intervention only when necessary and those that enjoyed the mix of both but had other
reservations such as not wanting to see the link annotations all of the time.

4.2.4 Likelihood of Using the Tool

Participants on the whole were likely to use the tool, with around 50% describing
themselves as being Fairly Likely to use the tool. Some participants really enjoying the
idea of the tool, with multiple participants signalling out the many different aspects of
the tool that they would like to use. A vocal minority of participants however felt that
they had enough knowledge in the topic such that they would not need to use the tool
at all. Instead, they felt that the tool was more suitable for non-technical people, even
though this ran contrary to the overall URL accuracy results for harder to detect URL
features.

Looking at Figure 4.2, we can there is a trend among the participants based on com-
puter security experience. We can see that participants who have self-declare their

4.2. Interviews 37

Figure 4.2: Usage Likelihood related to Computer Security experience

experience as Intermediate have a lower weighted average towards Somewhat likely,
than the other Beginner and Expert groups, which have a higher weighted average of
Fairly Likely. Analysing the open codes for this question, this may be due to overcon-
fidence on the part of these participants, in that they feel they know enough not to need
features of the tool.

4.2.4.1 General Analysis

From the participants’ understanding of phishing and URL reading, this would suggest
that participants would benefit from more information in this subject. Particularly, with
the potential consequences of not understanding the more detailed aspects of URLs
which are harder to pick out. This is a positive indicator that the goal of developing
the anti-phishing tool to inform users would be useful for the intended userbase. This
is complimented by the positive overall response when users were asked how likely
they were to use the tool with 68.75% of users, feeling they were Fairly likely to use
the tool. The participants also singled out many of the features that are intended to be
incorporated into the tool as being features they would wish to see as part of it.

4.2.5 Recommendation

Based on the previously outlined results, the User Interface elements were chosen by
selecting the most popular features and combining these into a compatible cohesive
combination. Since the intervention group was the largest of the identified grouping
- it was decided to focus on the wishes of these participants when designing the full
capabilities of the tool. This was easy as this group were largely happy with the features
that were already being considered for incorporation within the tool. The second group
were catered for by adding settings to limit the UI options such as the display of the
link annotation shields. The feedback from the last group in particular helped to derive
the efficiency requirements of the system.

The UI elements chosen were:

38 Chapter 4. Requirements Gathering

• a context menu entry (on right click) to access link details

• a badge over the plugin icon to display the overall site information

• link annotations with a status for each link on a page

• a popup with an information breakdown on how the tool’s status value has been
derived

• a tutorial and settings pages with a text and image focus

It was also decided that the system would need a low rate of false positives to help
cater for the second identified grouping. Further studies would also be recommended
to better understand how to reach out to the overconfident grouping identified in the
interviews.

4.3 Requirements

As a result of these interviews, and analysis of the literature, the high level design goals
of this system were defined follows:

Requirement 1: Classifying every URL according to one of three states as part of a
traffic light system

This classification should occur for those present in any given page, the page URL
itself and any URLs user requests from any platform which would be processed by the
browser. This would allow the tool to be a comprehensive solution to phishing, and
potentially flag other security exploits which employ malicious URLs.

Requirement 2: Using the browser to prevent the user visiting any URLs that have
been classified as malicious without explicit user consent

This is intended to cut down unintentional direction to malicious URLs, caused when
on platforms such as email and social media.

Requirement 3: Present the information on each URL to the user in an understandable
way, both at appropriate points of intervention and on user request

This is to encourage the user to learn through embedded training, and allow users to
catch URLs themselves through this training and contribute to reducing their own dan-
ger.

Requirement 4: That the end built system includes the best practice of software engi-
neering: maximising efficiency and accuracy

That the system works effectively as and when required, such that users are not do not
remove it due to efficiency concerns.

4.4. Summary 39

4.4 Summary

This chapter outlined the design process which occurred in choosing to develop an
anti-phishing tool for the Chrome web browser. As a result of the interviews and a
prior literature review, the features of the tool were able to be selected. The proposed
system should provide contextual information on every link a user visits on every page.
It should also incorporate active intervention, to prevent users from visiting any page
that it deems malicious, and present them with why this is the case.

The UI features of the tool, as they will be incorporated in the Chrome extension, are
also derived as part of the interviews. This provides a solid base on which to establish
a more developed system design.

Chapter 5

Design

In order to build on the requirements I had gathered from users for the anti-phishing
tool, in this chapter, I outlay the design of the tool in order to evaluate how effective
the design will be at achieving the desired requirements. I begin this process by pro-
totyping the user interface with paper drawings before developing a proposal for the
technical implementation of the URL calculation system. I evaluate these designs by
consulting with an expert to give further feedback and improve on the design.

5.1 Prototyping the User Interface

I initially began by prototyping the user interface by drawing out my design on paper.
The goal of this was to test the design of the tool prior to implementing it, as a basis to
get feedback on this.

The main layout of these pages was primarily drawn from Figure 3.1, as outlined in
paper [4]. Since this, the purpose of this paper was to prototype an ideal means of com-
municating URL status information to users. The communication of this URL status
information was iteratively designed with users drawn from the same target userbase.
I choose to base the primary view of this tool on this as this presented the advantage of
reducing the amount of time I would need to test the way I display URL information
to the users. However, one of the difficulties of this decision was that the URL report
design had not been technically implemented due to the complexity of implementing
this as a functional user interface. In addition, the URL information display did not
fit with the look of a typical chrome extension, being originally designed as a report
rather than an interface. This meant that it had to be adapted for usage as part of a
functional UI.

Figure 5.1 illustrates an example of one change which had to be made to the URL
report to use it as part of a functional UI. This is demonstrated with the addition of a
further details expansion panel, rather than having this information being constantly
displayed as part of the URL report. During the interviews, the users highlighted that
they would not want to see all the URL details at once, so this design decision had the

41

42 Chapter 5. Design

Figure 5.1: Popup Summary

Figure 5.2: Popup Summary with Further Details

benefit of meeting their request. Figure 5.2 shows a paper design of the tool with the
further details panel displayed (after having a user click on further details).

The user intervention screen was designed by drawing inspiration from Google Chrome’s
site warning feature, as can be seen in Figure 3.3. This demonstrates the incorporation
of embedded training within the extension through the display of the URL analysis at
the time of this intervention page being shown.

Further paper designs of the tool’s features are provided in Appendix C. The paper de-
signs for these tool features were partially inspired by other high-quality user interfaces
of existing Chrome extensions, such as Ghostery [21].

5.2. Back-end Design Proposal 43

Figure 5.3: Intervention page

5.2 Back-end Design Proposal

The Back-end Design Proposal primarily involved outlining how the tool would clas-
sify URLs in order to be displayed by the extension’s front-end. There were a number
of competing issues in consider in the design of this algorithm. The report itself, com-
prising a full list of the included heuristics, can be found in Appendix D.

5.2.1 Selecting the Algorithm Type

First off with limited resources, such as a lack of labelled data, it would have been
needlessly challenging to develop an algorithm which employed machine learning. In
particular, it would have been difficult to develop an algorithm which could have beaten
the accuracy rates of Google’s own, as referenced in Chapter 3. This was coupled
with the knowledge that the tool would be able to benefit from the results of Google’s
algorithm, with the ability to easily access Google’s safe browsing data [30].

Secondly, there was a need to process the URLs in such a way that would provide
information for the front-end to display. In machine learning approaches, it is possible
to produce a label and associated probability for the data but much more complicated
to derive why the URL would have been labelled in this way. This was compounded
by my lack of in-depth knowledge of machine learning at this time.

Therefore, this lent itself to employing a heuristic algorithm. This type of algorithm
could be used to match the URL against a set of defined heuristics. This would result
in a status value for each heuristic which could be then be aggregated with the values
of the other heuristics to form an overall count of the status types. The overall count of
these types can then be matched against a set of given thresholds. The issue with this
approach is the difficultly in selecting appropriate heuristics which cause the algorithm
to give a high accuracy. This is difficult for phishing in particular as it requires a

44 Chapter 5. Design

significant amount of research in what is a literature dense research field. The benefit
of this approach is that the heuristics would be able to be used in the User Interface
calculation of the tool itself. For example, if a heuristic is present in a URL, this could
be clearly referenced in the front-end, such as in Figure 5.2.

This is why I chose to use a heuristic algorithm. The core of this algorithm, beyond
what has been described, was the association of each heuristic with a severity level.
These severity (or issue) levels being, in order of decreasing urgency, one of the fol-
lowing: “known”, “possible”, or “none”. The algorithm was designed to then use the
severity level of these heuristics to indicate an overall status value of for a URL: “safe”,
“warn” or “alert”.

5.2.2 Decision-Making Algorithm

Each of the severity levels is associated with a colour: “safe” is green, “warn” is yel-
low and “alert” is red. This is intended to mirror the traffic light system which is
incorporated into the UI.

The decision-making algorithm’s input will be the given URL and all required infor-
mation needed to consider the classification of this URL. The algorithm begins by
considering each case where a URL might be considered purely green (i.e. consider-
ably safe). If any of these indicators, such as the inclusion of the URL in a reputable
whitelist, are true then the URL is classified as safe, and the algorithm returns the URL
has having a green state. Otherwise, the algorithm will analyse the URL and classify
the given URL as having either a yellow or red state.

To achieve this, the algorithm analyses each set of features using the heuristics out-
lined in the subsequent chapters. Each set of features is a useful indicator of a URL’s
safety, which can be used to classify how likely a given URL might be phishing. These
indicators are referred to as issues in the Back-end Proposal, and each of these issues
is categorised with one of the three severity levels.

To classify a URL, a count is kept of each issue that arises from the data parsing. This
is matched with threshold values which are used to classify this URL. A list of these
classifications can be seen in table 5.1.

Known Issues Possible Issues Personal Whitelist Output
>=1 >=0 False Red
>=1 >=0 True Warn

0 >=5 False Red
0 >=5 True Warn
0 <5 False Warn
0 0 False Green

Table 5.1: Thresholds for Output

Since the algorithm favours red classifications rather than yellow, to provide a stronger
safety net for the user, this potentially creates a higher false positive rate for the user

5.2. Back-end Design Proposal 45

Figure 5.4: An example manipulation heuristic (drawn from the report in Appendix D)

than what they might wish. Active intervention with a high false positive rate has been
shown to have a reduced effectiveness over-time [85].

The primary learning component of the tool was designed to help resolve this problem.
This component is the implementation of a personal whitelist - a list for users to store
the links they have marked as being safe. The intention is for users to be able to update
this whitelist with URLs whenever they are analysed by the tool. This is therefore
intended to be a constant element of the UI and will be particularly useful for URLs
wrongly classified as being in the red state (false positives). After the user whitelists a
site, it will not be given a red state by the system. Instead, it will be given a yellow state
which means active intervention will not occur for this URL. The user however, will
still be made aware they are not entirely safe in the presentation of the same analysis
details. This should reduce the false positive rate of the tool for each user over time.
How the personal whitelist affects the status classification of the URL can be seen in
the Personal Whitelist column of table 5.1. In practice, the ideal outcome would be
that the tool tailors itself to users common sites over time, therefore only showing sites
that are concerning which the user has never visited before.

5.2.3 Malicious Heuristics

There were a number of heuristics outlined as part of the tool design that will be used
to identify whether a URL is malicious or not. Each set of heuristics requires different
resources in order to process them. The design proposal outlines information for each
heuristic: the heuristic title, a brief explanation, how the heuristic will be calculated,
a summary of the data required and an severity level this heuristic should have. An
example of this can be seen in Figure 5.4.

5.2.3.1 URL Parsing Heuristics

The design of these URL Parsing heuristics focus on parsing the URL into its distinct
components, which are then used to pick out elements in the URL itself which might
suggest it is malicious.

Processing each of these heuristics involves using natural language tools such as regu-
lar language expressions (regex) to match the contents of each URL against any con-
cerning flags. These often involve the request of some data in order to complete each
check accurately; the limited amount of required API accesses means these checks can

46 Chapter 5. Design

be performed more quickly and efficiently. Each metric relates to an severity level
based on how much of an indicator that metric is.

5.2.3.2 Domain Heuristics

The domain heuristics are designed to measure indicators which focus on the details
of domain names. An example of such a heuristic, involves checking a domains reg-
istration status. In doing passive queries related to the domain name, the plan is to
detect indicators based on the known trends of malicious URLs. To handle each of
these indicators, external data must be requested using APIs to reason what the status
of a given URL is in related to the Domain Name System.

5.2.3.3 Page Heuristics

The page heuristics naturally involve a high amount of integration with a number of
APIs due to the need to gather contextual information about the pages. An example of
this is the search results heuristic, which involves the checking for inclusion of the page
in a queried search engine’s results. Since phishing websites have short lifespans they
are not usually in these results. Therefore to implement this, a search engine API needs
to be integrated into the tool in order to do this check. Each of the other heuristics also
requires the use of a number of external data sources to be able to accurately function.

5.2.4 Safety Thresholds

As part of this algorithm design, the tool is intended to match heuristics based on the
safety of the URL before the analysis of any other heuristic. This was a design choice
intended to reduce the computation time required for each URL. If the URL can be
established as being safe, there is little need for users to be presented with further
contextual information on why it is wrong.

The issue with this approach is selecting the appropriate features which can be used
to accurately indicate a URL is safe. This is very challenging as selecting the wrong
features could lead to false positives in which a malicious URL is inaccurately marked
as safe.

The proposed heuristics are a combination of a site having a high page rank, a high
popularity (due to its inclusion on a list such as Alexa’s top sites) and a high amount
of social media shares. The first two are primary features, with the social media shares
being a secondary feature used to decide edge cases (as this is less reliable). The
thresholds for these features will be the subject of further research.

5.3. Expert Design Evaluation 47

5.2.5 Data Sources

As part of the algorithm proposal, the potential data resources that could be used to
populate the information of the tool are outlined. This is not an entirely complete list
of resources and is intended to present a picture of critical areas where information
would be sourced. For instance, a list of the most popular sites to be used in safety
metrics sourced from Alexa Topsites.

5.3 Expert Design Evaluation

While designing the tool, I approached an expert in phishing and URLs, Kholoud
Althobaiti, to evaluate the design proposal for the tool. Expert evaluations involve
using the experience of experts in a field to analyse potential problems in proposed
designs. As an evaluation method, it is useful for evaluating difficult material and can
help identify any user interface or technical issues early in a design process - before
more costly implementation or user studies [71].

The expert evaluation was focused on two main aspects: the user interface and the
back-end of the URL decision-making components. The goal was to help identify any
potential issues in my design to allow me to improve these before implementation.

5.3.1 User Interface

As part of this evaluation, I met with Kholoud in person to outline my initial plans for
the tool. Kholoud gave me her feedback on the User Interface and the general approach
of the tool.

I presented her with the paper prototypes of the tool I had made before, as in Section
5.1. Kholoud suggested that the User Interface was generally suitable for the outlined
purposes. Initially, she highlighted that the details of the URLs should not be displayed
in the expanded further details panel, but borrow from tools such as Netcraft and open
in a new web page to highlight this content more clearly for users. However, after we
discussed that this might make users less likely to access this information, Kholoud
suggested the current approach was sufficient. She further advised that the summary
section 5.1 be simplified to make it clearer to users what the status of the URL was.
Kholoud felt the badge alone was not sufficient to display the status of the URL and
that this information needed to be more clear. The Netcraft interface (in Figure 3.2 on
24) was drawn on as an example of how I might display this status information - by
referencing the status bar included at the top of the Netcraft interface. These changes
to the summary were very useful, and not some that I had considered including as part
of the tool.

To help with this, it was suggested I reduce the size of the extension title, so there was
more space for the summary. Kholoud was not sure that the Google search feature was
necessary as part of the tool, as this information would be displayed as part of one of

48 Chapter 5. Design

the heuristics already. She also suggested some changes to the buttons and the general
layout to make them more clear for a user.

As an additional feature for the tool, Kholoud recommended linking the tool with an
blacklist such as PhishTank [53] which allow the user to report malicious URLs they
encounter to this blacklist. This is intended to benefit the whole community since the
tool has been designed to use blacklists such as PhishTank in its calculations.

5.3.2 URL Decision-Making

Alongside, the feedback on the User Interface I also discussed the design for the URL
decision-making algorithm. I outlined my plans at the meeting to design a heuristic
algorithm based on the indicators that have been established as common across URLs.
The intention behind this is to both analyse the URLs and build a list of the issues that
are displayed to users.

Kholoud was generally positive about this approach and pointed me to further re-
sources which would allow me to increase the breadth of heuristics involved in the
tool. Subsequent to this discussion, I finished preparing the 18-page Back-end Design
proposal discussed before. Kholoud agreed to review this proposal and the severity
ranking I allocated to each heuristic as part of our expert evaluation.

5.3.3 Evaluation of Design Proposal

After reviewing this report, Kholoud provided extensive feedback to improve the phish-
ing heuristic algorithm. The feedback both discussed the overall algorithm and gave
specific feedback on some the heuristics.

One of the major improvements Kholoud was originally confused as to why I had
chosen the arbitrary threshold of five when classifying a URL as yellow or red, see
table 5.1 on page 44. This was chosen at the time based on my intuition that this
number would represent a satisfactory mid-point for users false positive rates. Kholoud
advised this was not enough to justify this threshold, and this could be improved by
varying this threshold in a future user study to find the ideal threshold to minimise false
positives.

Another major improvement that Kholoud suggested was having two metrics for each
heuristic: a metric for a known issue and also a possible issue. For example, with
the URL manipulation heuristic - the number of subdomains - this heuristic could be a
possible issue if it has less than three subdomains, but more subdomains would indicate
a known issue. This was suggested to improve the depth of the heuristics and improve
thefore improve the accuracy of the tool.

Kholoud also gave feedback on the individual heuristics in the report too, suggesting
improvements for the issue level and calculation means. For instance, such as dropping
the HTTP/HTTPS heuristic as one the URL manipulations due to its unreliable nature
as a phishing indicator.

5.4. Final Design 49

5.4 Final Design

Overall, Kholoud’s feedback was invaluable in helping to analyse design of the tool.
Due to the depth of work involved in implementing each heuristic and particularly the
integration of all the necessary APIs, this presented a clear opportunity to distinguish
this section of the project for work next year. Due to the feedback on the back-end
design, further work and research is needed to more accurately determine the improve
the accuracy of heuristics designed for this tool, with reference to the appropriate lit-
erature. This future work is further discussed and justified in chapter 8.

As a result of this feedback a number of changes were made to the design at this point
in the project:

• The presentation of the URL status was improved in the summary section of
tool’s main view

• The ability for users to report URLs was added to the interface design

• The summary information was ensured to be simple and clear when presented to
the users in the final implementation

5.5 Summary

This chapter outlines and evaluates the initial designs of the tool, drawn from the re-
quirements outlined in the previous chapter. As a result of the expert evaluation dis-
cussed in this chapter, the project plan was formalised by the decision to make the
URL decision-making components be the focus of next year’s work. As well as this, a
number of improvements were made to the final system design such as improving the
clarity of the tool’s status summary and the depth of the designed heuristics outlined
in the Back-end design proposal.

Chapter 6

Implementation

The CatchPhish system was implemented to leverage existing web technologies to
derive information about any given URL in any web page, or entered into the browser.
The system achieves this by extracting all the URLs from each page the user arrives on.
The tool then sends each URL to a purpose-built decision-making server which parses
and handles the analysis of the URL. This information is then presented to the user
using a combination of URL presentation research[4], and interaction points, backed
by the requirements gathered in Chapter 4. The resulting system provides extensive
information about each URL in a user-friendly way.

This chapter discusses how this system was implemented and the design decisions that
were taken to achieve this.

6.1 Project Timeline

As part of the final implementation of this project, there were 4859 lines of code (dis-
counting libraries, framework modules or any other code not written by myself) for
the final implementation of the system across three distinct development frameworks.
I chose cloc[2], as an Ubuntu [10] code counting tool (which discounts comments,
blank lines and non-text files) to count the lines of code. This is because GitHub [23],
which was used as the remote version control provider, gives a more generous but
misleading amount, see Figure 6.1.

However, Figure 6.1 also demonstrates the project timeline well. I began the project
doing background reading as part of a literature review, whilst to help formulate the
project goals. After initially prototyping some back-end features, such as incorporation
of the URL-parse [50] module. The next stage of the project was to plan out the
interviews I would use to gather requirements from the intended user base. I then
prototyped the tool over the Christmas break, specifically working on the extension
infrastructure. Then spent two subsequent weeks conducting the interviews. These
were completed, before spending the rest of the semester implementing the front-end
and the decision-making elements of the system.

51

52 Chapter 6. Implementation

Figure 6.1: Lines of code and commit timeline in the project according to Github. The
lines of code include a count of any changed lines of code including the development
build libraries.

6.2 System Overview

6.2.1 Components and Interaction

There are three major components across the system:

• Chrome Extension Infrastructure - handles the overall application logic, the
extension’s interactive elements and page alterations

• Front-end - responsible for the main user URL breakdown display, along with
tutorial pages, built using a React app incorporating Material Design

• Server - responsible for the URL calculations, built using the node.js framework

Figure 6.2 demonstrates how each of these components fit into the overall system ar-
chitecture. The figure shows what information they communicate with one another,
and the major sub-components in each component.

6.2.2 Choice of Technologies

6.2.2.1 Extension Technologies

The primary technologies used to develop a Chrome extension are also the core web
technologies - HTML, Javascript and CSS [34].

• HTML provides the basic structure of sites, which is enhanced and modified by
other technologies like CSS and JavaScript.

• CSS is used to control presentation, formatting, and layout.

• JavaScript is used to control the behaviour of different elements.

Since these are used throughout the web, there is extensive documentation in develop-
ing with these technologies [75].

The use of these technologies was an implicit requirement for this project since they are
a necessary part of developing a Chrome extension. As I had limited prior experience

6.2. System Overview 53

Figure 6.2: System Component Overview

54 Chapter 6. Implementation

in developing with these technologies, the project presented an opportunity to develop
these skills.

6.2.2.2 Front-end Technologies

Choosing the Component Library:

Initially, I attempted to implement the extension front-end using HTML. However, this
proved difficult with the limited amount of pre-built resources present within HTML:
requiring each layout button and style to be created from scratch. The time it would
take to develop using this technology alone would have been too long, particularly to
develop a clear and consistent user interface.

As a result of the slowness of this approach, I began looking into other libraries and
frameworks that I could utilise to improve the speed of my development and the re-
sulting quality. I compared AngularJS [6] and React [56] as potential option: being
two popular web development libraries available that can be integrated into chrome
extensions [22, 63].

In exploring AngularJS, I found it to have too many unnecessary features. There was
little need for a full Model View Controller (MVC) model, this is an architectural
pattern commonly used for developing user interfaces that divides an application into
three interconnected parts [58]. The full model was unnecessary in this instance since I
was able to handle the Model and Controller elements through the extension backend.
Due to the larger amount of features, it was also more difficult to learn and touched on
my time constraints for the project. Since React only handles the View element of the
MVC model, this was better suited for this project.

React was thus the favoured option and I began developing the front-end using this
technology.

Choosing the User Interface Design Technologies:

Material design [17] was something I wanted to incorporate into the project due to the
high-quality appearance of the assets and consistency with the chrome design. This is a
design language created by Google and incorporated into their products which focuses
on using responsive animation, padding, and depth effects to make the interactions
clear to the users. The main purpose of which is to incorporate design principles with
a modern technical user interface implementation details.

Contrasted with styling paradigms such as Bootstrap [9], which has a similar collection
of assets, Material Design was favoured due to its consistency the design with Chrome
which is intended to help with the overall user experience of using the tool. Due to
React’s ease of incorporating components from other component libraries, I was able
to use bootstrap components in at least one part of the application where the Material
Design library was not suitable.

Material design integrates well with React, and between them they have a large amount
of documentation available to help with development. This allowed me to create a

6.2. System Overview 55

visually striking and reactive implementation.

6.2.2.3 Server technologies

As part of implementing the tool, the original intention was to incorporate the URL
decision making as part of the extension infrastructure itself. However, due to the im-
plementation of Chrome extensions I found there would be difficulties in incorporating
the high amount of APIs required. This is due to the need to explicitly declare each
one of these to the user and the Chrome extension’s closed environment policy which
is designed for user security. Since these APIs are needed to process many of the
decision-making heuristics, it became necessary to use some external tool to handle
the decision-making. This led to the decision to implement a server as a central re-
source to handle the decision making for all deployed extensions. This design decision
had the further benefit of reducing the number of computations needed on each user’s
individual device for each URL analysis, in favour of stored central calculations.

I created the decision-making server using node.js [49], an open-source cross-platform
run-time environment that executes Javascript code outside of the browser. The HTTP
module [74] as part of this environment is what I used to run the server. This was
chosen due to its simplicity and ease-of-use.

The chosen server technology allowed me to prototype the server quickly, due to my
experience with this technology when testing the URL parsing components earlier in
the project. The use of this technology had the further benefit of being lightweight
compared to more dedicated server technologies such as apache [20], which would
have required significantly more time to learn to incorporate into this project.

6.2.3 Understanding Chrome Extensions

6.2.3.1 What is a browser extension?

A browser extension works by extending the functionality of a browser by adding
further components. These are typically designed to incorporate further features such
as to improve the ease of use of a user or provide features such as improving the user’s
security.

6.2.3.2 Chrome Extensions

Chrome extensions have access to a number of specified APIs to allow extensions to
interact with the browser in a controlled environment. This environment acts as a lim-
ited framework for developing extensions. At a high-level involves having a manifest
file to specify the details of the extension including its name and the icons to be used as
part of the extension. Coupled with this are separate scripts, each with different levels
of access:

56 Chapter 6. Implementation

• Content script - access to the web page but with very strict access to a limited
set of APIs

• Background script - full access to extension APIs but no direct access to the
web page

• Popup script - access to the popup.html file (the main display of the extension)
but limited access to APIs

Figure 6.3: Extension component overview[25]

Each of the different scripts are isolated environments able to communicate with one
another using the chrome extension message passing API, as illustrated by Figure 6.3.
This allows data to be passed from each of the extension elements to another.

As part of developing a Chrome extension, developers are provided access to a number
of API as part of the development environment. This provides a way for developers
to access features of the Chrome browser they would otherwise not. These APIs also
allow access to the visual components that Chrome extensions have access to.

6.3 Extension Infrastructure

The extension infrastructure was developed by using each of the components outlined
in the Chrome extension.

6.3.1 Content Script

The content script works on every page that the user visits and extracts and updates
all the links on those pages. To achieve this, it incorporates the jQuery [36] library,
a lightweight Javascript library which simplifies a number of common tasks done in
Javascript, allowing these tasks to be written with a single line of code. This is why I

6.3. Extension Infrastructure 57

choose this library when compared to using plain Javascript, as it greatly improves the
code readability and reduces the code complexity.

For each page, the jQuery library is used to find all of the anchor tags on a page.
“An anchor tag is an HTML tag used to define the beginning and end of a hypertext
link”[81]. Users click on these tags to reach the destination of the link. Each anchor tag
contains an attribute called a href which contains the destination URL for that anchor
tag. JQuery finds all the anchor tags in one line of code:

a n c h o r t a g s = $ (’ a ’) ;

From each anchor tag with a href, the content script extracts these and sends each of
these to the background script for classification. Whilst these are being processed,
the content script updates all the relevant links in the page with a small grey shield
annotation. This was a design decision intended to show the user that the tool is still
working at this point. This is also done using jQuery, by finding all the anchor tags in
the page and updating the ones where the href is being processed.

Once a link is processed and sent back by the background script, using the message
API, the extension annotates the link with an appropriate coloured shield of the colour
representing its status. This means that the links in the page are updated as they are
processed since the message API is an asynchronous process. This helps reduce the
page load for the user, rather than waiting for all the links on the page to be classified
before they can view the page. Response time has to be considered from a user per-
spective as it influences the design of the tool. Response times slower than ten seconds
influence how a user interacts with the page [47].

Further justification of link annotation feature from a user perspective can be found in
Section 6.4.2.3.

6.3.2 Background Script

The background script handles the overall application control. It interacts with the
extension cache, initialises the extension UI elements, handles the application message
passing to the front-end and processes the server classifications. It also filters the web
traffic of the user.

Each of these extension UI tasks is done with integration with and manipulation of
Chrome extension APIs such as the browserAction API.

6.3.2.1 Extension data storage

The extension handles different data types individually, using a combination of differ-
ent Chrome APIs.

To implement the users’ personal URL lists, it stores each URL to a synchronised
storage state which is connected with the users Google account. This allows users to
have the same personal URL lists maintained across each usage of their browser.

58 Chapter 6. Implementation

The extension stores each URL that the user lists in local storage in the form of a cache.
This is intended to reduce the computation time for each URL since it can consult the
cache if the URL has previously been computed rather than consulting the server. This
uses Google Chrome’s local storage API.

These storage APIs are both asynchronous so do not affect the efficiency of the system.
These APIs are also very lightweight, so they are called whenever there is a new value
to be updated since there is no noticeable systems impact in doing so: the Chrome
browser handles this with a purpose-built file queue system.

6.3.2.2 Web request intervention

As part of the tool, the extension interrupts any web requests the user makes that are
deemed malicious. Each of these is considered by the server and stored in the local
data. A web request is blocked based on the flags associated with the URL. Any request
which is an alert is blocked. The request is analysed onBeforeRequest, so no content
from the page is loaded before it is blocked.

When a page is flagged, rather than go to the malicious site, a site warning page is
shown with the option for progressing to the malicious or returning to their previous
site. The extension interface is opened at this point, and the user is encouraged by the
text on the site to read the information on the extension.

To do this, the web request API that is provided as part of Google’s APIs are used.
This is a very useful API which allows every URL to be checked as it is called on
the browser. I have chosen to filter the web request analysis to the “main frame” web
requests. These refer just to those request which are loading full pages. This allows us
to filter out the number of web requests to analyse but also allows us to focus on the
malicious pages themselves since the contents of the page (non main frame requests)
are not loaded before the main frame. After which, the system requests the information
for the URL and checks if it is an alert status along with whether is has been previously
flagged by the user trying to access it. This flag is used to indicate if the user is currently
on the site warning screen to allow the user to progress to the site if they wish.

Overall this prevents the user from being affected by any flagged malicious site if they
choose not to visit it. It also presents an ideal learning point for them to learn more
about the details of the malicious URL in an embedded learning scenario.

6.4 Front-end and User Interaction

The primary goals of implementing the frontend where to implement the designs out-
lined in Chapter 5, in order to present information to the user in a clear and concise
manner.

As part of this, the user interface relies on calculation and display of the URL calcu-
lations displayed by the server, with the UI incorporating reference to the state cal-

6.4. Front-end and User Interaction 59

culation ’safe’, ’warn’ or ’alert’ outlined in the decision making heuristic calculation
in Back-end Design Proposal Section 5.2 to make the status of each URL clear to the
user.

The front-end has also been made with features designed to improve user support and
understanding when using the tool, this is outlined below.

6.4.1 Research Interface Implementation

The research interface implementation discusses the implementation of the popup.html
and incorporates the paper designs outlined in Section 5.1. This is the primary means
of breaking down and displaying the details of the URL analysis to the user.

6.4.1.1 Developing with React and Material

React as a Javascript View library incorporates a number of small pre-built components
which can be slotted together to form larger more complex visual elements. It provides
a framework for these components to be integrated together, which is somewhat anal-
ogous to slotting together pieces of a jigsaw. To style and position the components, it
like HTML works with the CSS technology. React integrates easily with other compo-
nent libraries such as the Material Design component library, which means developers
are able to use these custom components within the React development framework.
This allowed me to use these the higher quality Material Design components to make
a more consistent reactive user interface.

React incorporates prototype-based programming, which means the parameters for
each function are passed top-down to each relevant component of the tool, like a tree
structure. To work with this type of programming, I had to design a naming system
that would allow the parameters to filter to the correct locations. This required signif-
icant planning before the implementation to maintain consistency. The issue with this
programming approach is that the tool does not properly render until it has received
the appropriate parameters. What this means from a user perspective, is that for a frac-
tion of a second a white box appears rather than the tool frontend itself. This could be
improved in future iterations by adding a loading state to the frontend.

6.4.1.2 Viewing the extension popup

When a user clicks on the popup as in the chrome browser, or a link through the context
menu on the page, this sends a message to the background script using the message API
to get the popup UI details. A response is sent and passed to the user interface details
to allow it to be popular across the tool. The heuristics and the content of the summary
boxes are calculated server side, as outlined in Section 6.5.0.2, but some of the UI is
calculated within the extension itself.

60 Chapter 6. Implementation

6.4.1.3 Popup Implementation

Figure 5.1 displays the front-end of the tool, the main components of which are:

• Top navigation bar - containing the help icons and extension title.

• URL Status bar - the coloured bar indicating the status of the URL

• URL expansion panel- contains the URL that the user asked about

• Summary boxes - presenting an overview of the URL status for different cate-
gories

• Further details section - an expanded section which contains the details of the
URL heuristics

• Bottom navigation bar - handles the whitelisting and reporting of the tool

Figure 6.4: Popup Summary Page

The URL status bar was implemented with a combination of Bootstrap and React com-
ponents. The coloured bar with the status labels was implemented using the bootstrap
stacked progress bars object to meet the design goals outlined in Chapter 4. This was
because the react material did not have the range of objects to implement this type of
detailed content containing progress bar. The blue status bar below this is an example
of the inbuilt React Material status bar component. One of the benefits of this design
is that it operates as a colour code for the users. The intention is to convey the status

6.4. Front-end and User Interaction 61

of the current URL and also inform the user about what each of the different colours
of the summary boxes means.

The URL expansion panel was implemented due to the size of the URLs. A number of
URLs, and particularly phishing ones, are too long to be able to fit into a single line.
Therefore this design displays as much of the URL as possible in the single line, with
the remainder being ellipsed. This lets the user see which URL they asked about. In
order to view the full URL, the user must click on the URL expansion panel, as shown
in Figure 6.5. This was necessary due to the limited space that the tool would be able
to occupy on the screen, and the desire to ensure that users were only presented with
the necessary information.

The summary boxes were implemented to give users a high-level overview of the most
important heuristics and this was a prominent feature of 3.1. They have been imple-
mented here in different colours to indicate their relative safety value in terms of their
contents. This is because many users may not know that a domain age of 2 years is a
safe indicator from their limited knowledge of URLs , but allows the tool to indicate it
is without them knowing fully why.

The further details expansion panel allows the user to see the list of all the heuristics
used in the calculations. Figure 5.2 demonstrates an example of how these are laid out.
There are two main components of this: URL manipulation tricks, which details the
tricks that have been used, and Facts which details the domain and page details. The
URL manipulation tricks are only shown if there are some heuristics present, otherwise
these are hidden by the tool so as not to confuse the user with an empty section.

The structure of each of these two sections is largely the same. The section is headlined
by a title and followed by a brief description of what the section means. Each heuristic
is then displayed underneath in a list. From left-to-right, the heuristic has its issue-
level displayed with the appropriate colour of concern and the issue text placed above.
This is to help avoid confusion with the status values such as “safe”, but the colours
have the same meaning so these remain the same. The heuristic title is then displayed
with a brief description of what this is underneath. The last box contains the specific
section of the URL, or content derived from the heuristic to be displayed to the user.
To implement this, the height of each of these heuristics is dynamically sized in order
to fit the heuristic content. This means that the heuristics display is fully adaptable to
what is sent by the server.

The bottom navigation bar is the main component which has it’s state stored and calcu-
lated by the extension. If the user chooses to report the URL for example, the extension
replaces the “Is this URL safe?” message with an option informing the user “This site
has been reported”. The status of the URL displayed to the user is also updated, but
not the heuristics themselves. Before a user can report a URL they are presented with a
small popup over the extension which explains the consequences of doing so and asks
them for confirmation. This is to ensure the user is familiar with these terms.

62 Chapter 6. Implementation

Figure 6.5: Popup URL expansion

6.4.2 Choice of Extension UI Elements and Intervention

To implement the user intervention points that are were derived in the requirements
gathering section, I had to incorporate a number of different UI elements as part of the
tool. This largely involved integrating with the Chrome extension API. This section
presents a summary of the implementation of these components.

6.4.2.1 Context Menu

On chrome, a context menu is created every time a user right-clicks on the chrome
browser. The extension framework allows developers to add items to this context menu
which can call functions within the extension. This can be customised by designating
when the context menu item will be added depending on what type of information the
user clicks on.

This feature is used in my extension for when the user right-clicks on links. At this
point, a menu item is added which the user can then click on. This opens the extension
popup and displays the information to the user on that URL. To do this, the tool cap-
tures the URL that the user clicks on and when the request for the popup URL is made

6.4. Front-end and User Interaction 63

Figure 6.6: Popup Further Details

Figure 6.7: Extension Context Menu Entry

by the frontend, it is the sent to it.

This uses a chrome extension API called contextMenus to implement this feature.

6.4.2.2 Badge System

A badge is a small icon that appears over the extension icon itself. This can include up
to five characters in text and coloured how the developer wishes. Therefore a limited
amount of information can be conveyed by a badge.

64 Chapter 6. Implementation

The badge system is used as part of my system to display the status of the URL in the
top bar on the page load, so the user has an immediate idea of how safe the current site
URL is. This is also updated for any URL in the popup that is being analysed such as
a link in the page, called by the context menu. This helps to keep the badge consistent
with the status information displayed in the extension user interface itself.

Figure 6.8: Extension Top Bar Badge

The badge is set with a colour depending on what the status of the URL is. This con-
forms to the traffic light system: safe - green, warn - amber and alert - red. Safe, warn
and alert are also the characters used to provide information to the user. This helps to
highlight the information for those that perhaps have more difficulty understanding the
colours. The badge is updated for each link as the page is loaded.

6.4.2.3 Implementing Link Annotations

Each link in the page is annotated with a small shield as shown, this is demonstrated
in Figure 6.9. These are used to indicate the status page as are implemented by a
combination of using the jQuery library, and pre-stored shield assets, as part of the
content script implementation. Each of these shields is a different colour depending
on the status of the URL. These conform to the same traffic light system as the badge
implementation.

This is intended to give users an immediate indicator of whether a link is safe or not,
based on the colour of the shield alone.

Figure 6.9: Extension link annotation

If a user clicks on a link that has not yet been processed, this is immediately prioritised
by the tool so that the user can see the necessary information.

6.4.2.4 Intervention page

The intervention page design is drawn from the pre-existing Google site warning, dis-
cussed in Chapter 3. This was a design decision taken to increase user understanding
of this screen, since they are already likely to be familiar with it as part of using the
Chrome browser.

This screen, as seen in Figure C.2, is shown to the user, whenever they click on a
malicious link, in order to prevent them from reaching it. To meet the tools aim to

6.4. Front-end and User Interaction 65

Figure 6.10: Extension Intervention page alongside the extension screen

explain to users why the tool has blocked them from visiting the site, I was able to
program the extension such that it would always open at this point.

6.4.3 User Support and Understanding

As part of the design of the tool, some further pages were designed and added as part
of the extension. The intention of these pages was to make the tool easier to use.

Figure 6.11: Extension Settings Menu

66 Chapter 6. Implementation

6.4.3.1 Tutorial and Learn URLs Pages

The tutorial and learn URL pages were both implemented with the goal of providing
users more context on the tool and the URL subject area respectively. These are both
implemented in a similar way, incorporating the text and images view favoured by
users in the interviews.

Each image on the page has an associated text description which provides greater con-
text to the user.

6.4.3.2 Report an Issue page

The report page was added to allow users to be able to provide feedback on the tool
in case of bugs or issues that might occur. This is a common feature of a lot of tools
and extensions. Developers can find this useful to get further information on issues
they otherwise might have missed, due to the limited ability to exhaustively test the
application, and this allows the tool to be more easily improved with further iterations.

Figure 6.12: Report and Issue Page

Figure 6.12 illustrates the page itself: a simple form allows the user to send the devel-
oper an email with the content of their choice. This was one of the few screens that
was not designed before implementation, the inspiration being drawn from other tools
during development. This page is integrated with the main extension view.

6.4.3.3 Settings Page

The settings page was added with a limited range of settings available for the user to
toggle. This page will be extended with further user options, but further research will

6.5. Decision-Making Server 67

have to be derived to find what these are. The main settings that are core to the tool are
the ability for the user to delete their data. Also, another setting is the ability to turn off
link annotation. This was a setting that arose from some users’ desire for very minimal
tool obtrusiveness. The tool also provides users with the option of sharing additional
analytics data, the whitelisted and reported URLS, with the server to improve the tool’s
overall performance. The tool does not currently send this information to the server
due to security concerns, as outlined in Section 6.6.1.1.

Figure 6.13: Extension Settings Page

Figure 6.13 illustrates the settings page and the options available. This could be fur-
ther improved in future work by making it more polished such as by improving the
selection options’ alignment. With the addition of further settings, I could add more
sophisticated navigation. This page was designed to be clear and readable to the user.

6.4.3.4 About Page

The about page is another feature which is common across tool and applications. It is
useful for reminding users of the purpose of the tool and giving them more contextual
information on its development.

Figure 6.14 does this simply by outlining the goal of the tool, when it was built and
who participated in the project. It does this in a clear way with different size of text to
highlight the different information.

6.5 Decision-Making Server

The decision-making server is responsible for calculating the status of the URL and
running each of the heuristics used to calculate this. It is also responsible for calculat-

68 Chapter 6. Implementation

Figure 6.14: About Page

ing how the heuristics will be displayed to the user as part of the User Interface.

There is still more to build and develop with the server and decision making. This is
outlined and justified in more detail in Chapter 8. What has been implemented this year
is the overall algorithm, the code structure for all the heuristics with placeholder code,
around four of the URL decision making heuristics and the User Interface calculations.

Figure 6.15 demonstrates the modular structure of the server code and illustrates how
each component fits into the server. This was derived by running the bash tree com-
mand in the server directory.

6.5.0.1 Calculating the URL Status

The overall algorithm was implemented as outlined in the design Chapter 5. Currently,
the server runs each of the heuristics, which returns the calculated status value, the
section of the URL it refers to (if any), and the title of the heuristic. Each of these is
added to an object containing all the heuristics of that set, and these, in turn, are added
to an object containing all the heuristics. To calculate the status value, a count is taken
of the occurrences of the status values across all the heuristics. This is processed by
the algorithm which returns the overall status value of the URL.

6.5.0.2 Dynamic User Interface Construction

The tool only shows the heuristics which the tool has detected as part of the URL and
no more, so these are what is generated. The intention is that it dynamically generates
each user interface statement based on the contents of the URL. For instance, when
explaining the domain of a URL to the user, it includes the domain of the current URL

6.5. Decision-Making Server 69

Figure 6.15: Server file tree

in the tool to display to the user. This is the main user interface element calculated by
the tool, and the decision was made to handle this server-side as this allows for more
adaptability with the potential addition or subtraction of further heuristics in the future
(as well as its consistency across users for the same URL).

The server stores a list of pre-crafted summary statements in one object, one for the
title of the issue and one for the explanation. The title remains consistent across URLs
but the explanations have been crafted with blank spaces to be filled in depending on
the URL. Where relevant, the section of the URL stored in the heuristic calculation is
used to replace this value. There are multiple explanations for different issues as they
have to be expressed to the user depending on the issue level of the heuristic.

6.5.1 Implemented Heuristics

To demonstrate the server is working effectively, I choose to implement some of the
heuristics which could be done without the need for API integration. Four URL
decision-making heuristics were chosen to achieve this, due to their ease of imple-
mentation.

One example of these heuristics is too many subdomains. The extension uses the
domain which is part of parsed URL information to isolate the subdomain. To do
this, the domain is split by each of the full stops and a count is taken of the subdomains
it contains. This approach was chosen due to the need to implement different issue
levels for each heuristic as outlined in Chapter 5. This allowed me to set thresholds
such that the number of subdomains might indicate it is a known issue, rather than
a possible issue. This causes the tool to incorrectly flag the University’s Informatics
websites as malicious sites. Being safe sites, this is clearly not ideal, so the threshold
will need to be further refined.

70 Chapter 6. Implementation

6.5.2 Unshorten Links

A further feature I decided to incorporate into the decision-making server this year, was
the ability for the tool to discover the destination of shortened links. This was chosen
as an implementation priority after the interviews showed participants’ inability to
understand these links.

To do this, I was able to adapt an existing web application - unshorten.link [70] which
provides a dedicated service to expand shortened links. I found that I could use this
service as part of the CatchPhish system by making use of the site’s URL query string.
Each of the URLs proceeded on the site can be done by updating the sites query string
with the URL that the system wishes to unshorten, such as in the example URL below.

https://unshorten.link/check?url=http://www.ign.com

To incorporate this into the extension I created an API to request the details from this
service. I first check if a URL conforms to the pattern of a shorten link before sending
a request to the service. This returns the site’s HTML, which I parse to extract the un-
shortened URL. This list of shortened link services is stored locally on the extension
which has the limitation of becoming outdated in the future,as such this would be a
future I would wish to further develop in the future.

6.5.3 Chrome Extension API

To interact with the server, I made a purpose-built API that the chrome extension could
use.

For each URL, the extension first checks it’s local cache to see if it has already been
processed (and requested) by the server. If it has, then it returns those values, and it
makes the request to the server.

This works by sending each URL to the server as part of the server’s reference query
string. This was a decision taken for development speed and does not represent good
security practice whatsoever since the user’s history could constitute sensitive data.
This is one of the areas I will improve upon next year. Once the URL is processed
the server sends back a JSON [37] string which is parsed, and the values are stored
in its local cache (for the users’ future access). The extension then consults the user’s
whitelist and report list to see if the URL has been stored in there. If it has, then the
status value calculated by the server is updated. If the server calculated value was alert
and the URL has been whitelisted, then the status value is updated to alert. If the URL
was green or amber and the URL has been reported, then the status value is updated to
alert.

JSON as a lightweight data-interchange format was chosen due to its debugging read-
ability and its easy integration with the chrome extension framework and the decision-
making server itself.

6.6. Additional Considerations 71

6.6 Additional Considerations

6.6.1 Efficiency and Security

To protect user security several considerations had to be made. First of all, secure
data storage was considered. It would have been a key concern to store all of the
URLs a user visits in plain text. This would have meant that users, on an attack, could
potentially have had their entire web history shared, along with the occurrences of,
any potential attacker. This consideration was solved by hashing and salting each of
the URLs before addition to the data structure. This means that each URL was treated
with the same level of protection as a user password might in the best case security
model.

The URLs are converted into a one-way string representation of some finite size, or
hash, and are then salted, by mixing it with a randomly generated string called a salt.
This hash is then stored alongside the salt so that it can be reapplied when the URL
needs to be compared. Whenever a URL needs to query the list, it is hashed and
compared with the unsalted hashes in the list to check if it is included in the list.
The reason salting is employed is to ensure that the hashes cannot be easily compared
against lists of known hashes in the application. To do this with the application, I
used the crypto [48] library as part of node.js as this incorporates a set of well-tested
functions to allow developers to easily incorporate these features into their node.js
applications.

In the CatchPhish system, hashing is implemented using the SHA-512 hashing algo-
rithm and used to secure the storage of the URLs within the user’s personal URL lists.
All that is needed for this feature to work effectively is the knowledge of whether a
URL is included in one of these lists. This is why I have implemented hashing for the
personal URL lists.

6.6.1.1 Further Security Improvements

The CatchPhish system could be improved in the future by encrypting the communi-
cations between the server and the chrome extension to protect users’ privacy. Since
the URLs sent to the server need to have their integrity maintained for them to be
both effectively calculated and displayed as part of the front-end, this could be done
with the addition of symmetric key encryption. To provide communication security
between these two primary components. Further to this, the decision-making can fo-
cus on pulling information from the databases such as WhoIs [80] to the extension,
rather than querying such databases for individual URLs. This would have the further
benefit of reducing the latency when checking each URL (improving the efficiency of
the application for the user), and increase the general userbases’ privacy by reducing
the number of URLs which could be maliciously intercepted. This would, however,
come at the expense of an increase in the memory consideration of the extension.

72 Chapter 6. Implementation

6.7 Summary

This chapter outlined the various components of the CatchPhish system. These com-
ponents are:

• the chrome extension infrastructure

• the chrome extension front-end - implemented as a React app

• the decision-making server for calculating both the URL status and user interface
contents

It discusses how each section of the system was designed and implemented throughout
the course of the project.

Chapter 7

Evaluation

The focus of the evaluation was to build an understanding of the usability of the tool
and how successful I had been in completing the user interface element of the project
this semester. To do this, I chose to use three different usability studies in a process
call triangulation to build a picture of how usable the system was from different per-
spectives.

7.1 Study Preparation

To prepare for the studies, I needed to create a closed environment that I would be able
to use to demonstrate the tool functioning. This was important with the limited amount
of heuristics implemented as part of decision-making server. The resulting preparation
allowed the tool to be fully demonstrated by making use of certain pre-processed URLs
embedded in an example web-page.

The goal was to develop the example website with a variety of anchor tags using dif-
ferent styles: those incorporated within images and icons, and those with a plain text
appearance. This was to demonstrate how the tool interfaced with each of these types.
Faced with the option of creating a whole new site for this purpose or adapting an ex-
isting site, I chose the latter. The primary justification for this decision was the amount
of time it would have taken to develop a purpose-built website from scratch. Particu-
larly when considering the time taken to develop it to the high quality required for the
studies, with the resulting site having limited useful beyond its use in the subsequent
studies.

Instead, I borrowed the template of a popular site that incorporated the variety of an-
chor tag styles that I was looking for - ign.com [35]. I used a website cloning tool
called httrack [33], to clone the index file and associated CSS files of this site. Since
my tool does not function with a user’s static local files, I implemented a node.js server,
similar to that outlined in section, to display these cloned ign.com files on request.
This allowed me to display the full functionality of the tool, including the tool’s link
annotation features.

73

74 Chapter 7. Evaluation

Figure 7.1: Demo site using IGN template

7.2 Demonstration with System Usability Scale

As part of the Informatics project demonstration day, I was able to conduct a study into
the usability of the application. This is an event which encourages everyone from the
Informatics academic body to attend and view the results of the undergraduate projects.

As part of this, I set-up a stall, created a poster and enjoyed the buffet. I was also able
to use a large wide screen television, lent to me by my supervisor, to demonstrate my
tool in the environment.

I demonstrated the features of the tool for each person that attended my stall, and
gave them a short opportunity to interact with the tool. Afterwards, each person was
asked to complete a short paper survey, which can be viewed in Appendix E. This
survey contained the questions which form the System Usability Scale, alongside basic
demographic details such as the gender and the year of the student. The questions
included in the survey are drawn from the evaluation method itself, and the survey
template itself was made as part of previous years’ usability projects.

7.2.1 Methodology

The System Usability Scale is a quick means of measuring the usability of the tool. It
consists of a ten item questionnaire with five response options for respondents: from
Strongly Disagree to Strongly Agree. The benefit of this approach is that it is very
quick to complete, and therefore easy to administer to participants, whilst giving a
strong approximation of the result.

7.2. Demonstration with System Usability Scale 75

Figure 7.2: An overview of SUS scores and how they evaluate to a grade[7]

7.2.2 Results

As part of the demo, I was able to get 43 responses to the survey. After calculating the
score, involving a large amount of data entry, my tool got a score of 81.3 - which puts
it in the range of very good. To better understand this score, I broke the score down by
the various demographic groups of the participants involved. There was no significant
deviation in the results, and the score was broadly consistent based on the student year
- so computer science experience had no noticeable impact on the score.

7.2.2.1 Further Respondent Feedback

Other than the score itself, I received a lot of feedback from respondents. A lot of
people when faced with the tool found it difficult to understand who the tool was
targeted for, and this required explanation. Many participants felt the tool would be
very useful for their parents rather than themselves, as they felt they have a strong
knowledge of phishing and URLs themselves.

This might suggest there is an attitude problem among participants: in that they have
a high perceived amount of knowledge which not always match their training in the
phishing field. The best way to test this would be a longitudinal survey with a focus on
measuring the participants knowledge of the topic before and after using the tool.

Some participants also thought the inclusion of a confidence value beside the URL
status would be a useful feature for the tool. After discussing the purpose of the tool
with them, the users were less keen on the addition of this feature. This was because I
explained that one of the purposes of the tool is for users to develop their own confi-
dence in the tool’s classification, and by extension a better understanding of malicious
URLs. The tool does this by explaining why it has arrived at each classification, in its
presentation of the heuristics it has used.

Participants on the whole were largely impressed by the tool, along with the size of
the television used to display it. Looking at the breakdown of the questions, as given
in Appendix E, participants were more likely to select that there was a high amount of
knowledge required to use the tool. This could be due to the demonstrative nature of
the demo when compared to the normal usage means of installing and using the tool.
This might give users a perception they would need me to discuss the features of the
tool, since I was already doing that, in order to use them. However, this will have to be
considered further in the future implementation of the tool.

76 Chapter 7. Evaluation

7.3 Think Alouds

The Think Alouds were conducted to get a more detailed understanding of specific
issues users might have with the CatchPhish tool. They are one of the most common
means of usability evaluation, as they provide researchers a tried-and-true approach to
understand how users interact with an application’s features. The evaluation method
itself involves participants working through a given set of tasks as they use the ap-
plication whilst talking aloud: voicing their thoughts and actions. The participants’
emotional responses allow us to build an understanding of how users actually use the
application so that the implementation of it’s features may be corrected or improved
[31].

The study itself involved a think aloud followed by a brief interview of the participants.
This post-interview was intended to capture any information that participant’s were not
able to provide as part of the Think Alouds - such as their overall impressions of the
tool.

7.3.1 Preparation

To prepare for this study, I created a consent form and wrote a script that I could use
to ensure my input was consistent across participants. This script was adapted from a
template provided as part of the Human-Computer Interaction course. Both of these
can be found in Appendix F. The script itself incorporates the interview questions I
created and asked on the conclusion of the Think Alouds.

The tasks themselves were intended to get participants to use the breadth of the tool’s
features. These focus on the participant’s using each of the tool’s various features.

7.3.2 Methodology

As part of the think aloud, the participants worked through seven tasks that would
demonstrate all the functional elements of the tool. The tasks participants were asked
to complete are:

1. Find a malicious URL on the page, and proceed to the page after viewing the
details of the URL

2. Find the settings page and turn the annotate link feature off

3. Use the tool help menu to read more about the tools web redirection features

4. Analyse the details of a URL on the webpage

5. Add a URL to your whitelist

6. Analyse any URL on the page and report it

7. Use the tool to report an issue with the webpage

7.3. Think Alouds 77

For example, the goal of task one was to understand how users would interact with the
links on the page: whether they would interact with the badges, use the context menu,
go to the page itself or just not understand the problem altogether.

When the participant indicated that they had completed all of the tasks, I then asked a
few brief questions about their experiences with the tool. This allowed participants to
provide further information about their general experiences with the tool, and express
the particulars of what they found easy or difficult when using the tool.

For each think aloud, a written transcript of the participants responses was made. An
accompanying audio recording was made to bolster the usefulness of the written tran-
script, and account for any information that may have been missed.

7.3.3 Results

The results of the Think Alouds were analysed using open coding, with a subsequent
thematic analysis, such as in section 4.2.

The data analysis was split into two key sections: feedback on the tool’s features (Ap-
pendix G) and an explanation of the participants’ likelihood to use the tool, given in
table 7.1. The full results of the quantitative data from the interviews can be found in
the appendix H.

The Think Alouds were largely positive and users on the whole had few reported issues
with the tool itself.

7.3.3.1 Analysis of the tool’s features

As a result of the study, there were a number of suggestions made to improve the
quality of the tool.

One particular aspect to improve would be making the Report an issue and Report a
URL features more clear, as this was a particular source of confusion for participants.
This was clear as P4 and P8 were not able to complete tasks 7 and 8 respectively due
to the confusion between these features. P4 in particular thought they had solved the
task by using the Report a URL feature and therefore did not find, or check for the
Report and issue feature in the settings menu. This was a similar but opposite case for
P8. This seemed to be due to the similar names of the features and could be improved
in further iterations with a simple name change.

The participants further highlighted more minor issues with the tool which did not
impact their completion of the tasks. Specifically, they highlighted that there could be
more user confirmation when using certain features in the tool - such as when reporting
an issue. They also felt that the whitelist feature could be made more clear, with some
participants being unsure what this feature was initially. This suggests a primer for
the participants for the tool’s key terms would be useful. This would compliment
participants suggestion in the interviews for a guide on first install.

78 Chapter 7. Evaluation

Open Codes Themes
Doesn’t know any other tools with functionality;
impressed by tools quality;
would recommend the tool;
very easy to use

Positive Impressions
Reasons to use tool

Clear information immediately;
redirection feature would be useful;
thinks the tool is useful in a security context;

Useful features

Suggested for a less technical person;
perception they don’t need it;
already know enough about urls;
feel browser habits are secure

Already know enough
Reasons not to use

Concerned about the amount of false positives Concerns
Already have a lot of extensions;
doesn’t use extensions Extension Use

Table 7.1: Think Aloud Likelihood of use open codes

There were a number of features that users liked within the tool. For instance, many
users liked the link annotation feature and the ability to undo an action. This compli-
mented users’ impression of the tool who were unanimously impressed by the quality
of the product. The ability to navigate around the tool was also a positive feature of
the UI that was highlighted: with multiple participants feeling it was easy to navigate
around the tool. Users were also able to understand the popup explanations being one
of the tool’s most well understood features - with users highlighting the clarity of the
URL analysis and intervention page in the features they like.

When asked in the interview, participants on average found the tool to be Fairly easy to
use. This suggests participants are happy with their experiences when using the tool.

7.3.3.2 Participants’ likelihood to use the tool

When asked how likely each participant was to use the tool, participants indicated
they were Fairly likely to use the tool, with only one participant indicating they were
less likely than this average - giving a response of Somewhat likely. When asked why
they gave their rating, a surprising amount of users suggested they did not need the
tool as they already had enough knowledge. This continues the trend seen with the
demonstration day surveys, and from the results of the interviews. This may need to
be tackled in future work, potentially by making the frequency of phishing attacks and
their exposure clearer to users.

7.4 Expert Evaluation

For the final evaluation I consulted two experts in phishing, the PhD student I had
been working alongside - Kholoud Althobaiti and Sara Albakry, an informatics PhD
student researching phishing URLs. As part of this expert evaluation, I provided a brief

7.4. Expert Evaluation 79

overview of the project goals, a demonstration of the tool features in use as well as a
analysis of the code.

Both experts overall impressions were very positive about the tool. Kholoud was par-
ticularly impressed with the amount and quality of work achieved in the limited time
since our design evaluation. Sara was similarly impressed and envisioned a future for
the tool, beyond its usage as a user focused tool, as a research platform that would
allow academics to experiment with the different possible combinations of user inter-
vention and phishing issue presentation to a wider audience - particularly as this is an
area of active research.

7.4.1 User Interface

Both experts really liked the link annotation feature, and it was suggested this could be
a novel contribution to the field. This would have to be verified in a future literature re-
view however. They specifically praised how the link annotation feature interacts with
all web pages. There were some areas they thought this could be improved. Kholoud
and Sara were both concerned with how users interacted with the links on the page,
and how the shields played into this. Kholoud suggested that one improvement could
be allowing the shields to open the popup itself. Sara felt for users unfamiliar with the
extension, that it was possible that the shields might be confused with the design of a
web page itself. They believed this could be further evaluated in an additional study
by comparing how the shields appear across multiple sites including different content.
This would allow be useful to understand how user interact with these, and the utility
of this feature in a security context.

Sara thought it was useful that the tool only highlights external links in a given web
page. This was expressed because it reduces the amount of information on the page,
and demonstrates the assumption that sites are generally safe if they still within the
same domain as the origin site.

Kholoud also suggested some further improvements to the main popup user interface.
She recommended the tool should ensure that the URL domain is always displayed
in the main view, as research shows this is the most important feature to highlight
to users. She further suggested that the tool could incorporate the work on colour
blindness that the URL report [4] had incorporated. However, Kholoud also expressed
an understanding that this was a very difficult problem to solve, out-width the scope of
this project.

7.4.2 Implemented Backend

Both experts had further advice on the implementation of the tool’s backend, and
specifically the implementation of the server heuristics. Kholoud advised that the im-
plemented heuristics could be improved by using specific Javascript modules rather
than personally crafted regular expressions, even though the implementation of these
was sufficient. As these modules typically have more features, and are well tested

80 Chapter 7. Evaluation

among the Javascript community, this would be more desirable. For instance, she rec-
ommended implementing URL unshortening by using a redirect package to get the full
history of the URL requests. Sara highlighted the incorporation of this package too.
Particularly, as this would also be useful to implement the redirection heuristic (such
as in Appendix D).

Kholoud also thought the optional gathering of the URLs that users choose to report
on the whitelist and server, was a useful feature. However, they felt this could be
improved beyond the outlined security improvements, by analysing the URLs for per-
sonal details. For instance, information hidden in the query strings that users visit
might contain personal information.

7.4.3 Further Advice

Security considerations with the server communication were also highlighted by Sara
specifically. After discussing this, Sara was happy with the suggestions I outlined for
improving these security considerations, as part of my work next year.

Sara also highlighted that it was essential that the tool explain the terms that it uses
more clearly. This is due to an over-saturation of terms in computer security, which
are shown to limit users’ understanding of the overall computer security picture, as
discussed in Chapter 3. Sara highlighted that the tool should ensure that terms such
as ’safe’ are quantified with relation to the specific phishing scope of the tool. For
instance, by highlighting what the tool actually marks as safe before the user down-
loads it. They also suggested this might be less of a concern because of above average
technical experience of the intended user-base.

Kholoud complimented the amount of work occurring in the project, and expressed an
understanding of the difficulty of implementing the research paper user interface in this
field. The improvements outlined, and also the positive feedback given to the project,
are highly appreciated mean a lot to me and my work over this piece.

7.5 Discussion

Overall the tool is popular with users across the various studies. The results of these
evaluations were positive about the usability of the tool, as given by the SUS rating of
Very Good and the average response of Fairly easy to use from participants during the
Think Alouds. The evaluations also highlighted there were several items which could
be improved next year.

In particular, improving the names of the features so that users are more familiar with
them, will one of the priorities for improving the User Interface. Another priority will
be to display the tutorial as a start up guide for users so they become familiar with the
key terms of the tool.

7.6. Summary 81

The expert evaluation also highlighted some areas of the system design that could be
improved. For instance, the security aspects and the methods of approaching some
of the heuristics. This feedback will be very useful in implementing the subsequent
heuristics next year.

The positive results of these evaluation are useful when considering how the require-
ments of the tool have been met.

7.5.1 Requirements of the Tool

The requirements derived for the tool, as outlined in Chapter 4 have been largely met
as part of the implementation and design of the CatchPhish system.

Through the implementation of the system, the first requirement, to classify every URL
according to one of three states as part of a traffic light system, has been met. The
traffic light aspect of this requirement has been met with the addition of both the link
annotation and badge features which highlight the calculated status of each URL ac-
cording to a colour associated status value. The classification of every URL has been
met through the implementation of the content script, and the processing of every URL
on the page by the server.

The implementation of the web request intervention feature and related intervention
page, have allowed the second requirement to use the browser to prevent the user
visiting any URLs that have been classified as malicious, to be met as well. The need
for users to click to continue to the blocked URL on the intervention page also meets
the need for the explicit user consent outlined as part of this requirement.

The third requirement to present the information on each URL to the user in an un-
derstandable way, both at appropriate points of intervention and on user request was
more complex to meet, but this has also broadly been achieved. The results of the
Think Aloud study indicated users felt the information presented within the URL anal-
ysis was clear. This helps to meet the first part of this requirement that the information
should be presented in an understandable way. Since each user can request informa-
tion about any URL on the page, by clicking on both the extension icon and using
the context menu feature, this meets the user request aspect of this requirement. The
intervention feature also helps to meet the appropriate points of intervention part of
this requirement. A final conclusion on whether the requirement for appropriate inter-
vention has been met cannot be made until the accuracy of the tool has been further
tested.

7.6 Summary

This chapter outlines the three different evaluations techniques used to evaluate the
usability of this tool:

• Demonstration with System Usability Scale Survey

82 Chapter 7. Evaluation

• Think Aloud studies

• Expert Evaluation

It outlines what the results of these were and some suggestions are made for areas
which could be further improved next year. The positive results of these studies and
discussion of the implemented components themselves, are used to evaluate how well
the requirements outlined in Chapter 4 are met. These are broadly regarded to have
been achieved, with an understanding of how these requirements relate to the user
interaction focus of the project this year.

Chapter 8

Further Work

While I have done several significant pieces of work as part of the project this year,
there are still many tasks I plan to implement next year as part of the final year of the
Minf.

I have tried to ensure there is a self-contained section of the project to help make the
work manageable over the two years. The main focus of my work next year will be
implementing the decision-making code and the further tasks outlined in this chapter.

8.1 Decision-Making Components

The URL decision-making components will involve implementing each of the heuris-
tics outlined in the back-end design report, discussed in Chapter 4. This may in-
volve a further literature review to update and improve the outlined heuristics. Whilst
the server and implementation structure has already been implemented, the heuristics
themselves need to be completed.

It was recommended in the design evaluation that the URL decision-making heuristics
each need their own set of metrics to evaluate which status value they should return.
This will involve further research to justify these metrics.

Implementing this code also involves integrating the CatchPhish system with a number
of APIs to get the requisite data for each heuristic. For instance, to implement the
unusual top-level domain heuristic, a list of the most common top-level domains will
have to be gathered. In order for the tool to be adaptable to internet trends, this has to
be dynamic and therefore requires using an API to allow for this. Alternatively, I could
hard-code the values of the top level domains. However, this would limit the tool’s
future utility to users.

To increase the efficiency of the tool, a further plan is to pre-populate the whitelist
based on the user’s history. Research into this feature was conducted this year. This
research found the user’s history cannot be directly accessed by a Chrome extension,
only the amount of times a given URL has been visited by the user. This requires

83

84 Chapter 8. Further Work

knowledge of the URLs in the user’s history in order to be able query them. To imple-
ment this, the user’s history can be queried using the user’s top sites and bookmarks
to find the number of times the user has accessed these URLs - with a high amount
suggesting these can be marked as safe. Therefore this research just needs to be imple-
mented in the tool.

8.2 User Interface Improvements

The user interface has some improvements that need to be made as well. These are
specifically related to user interface elements, closely related to the server decision-
making heuristics.

To fully implement the design laid out in the report, each heuristic requires a sentence
explaining what it means for each heuristic state. Each of these sentences needs to be
dynamically generated based on the contents of the URL. This means, for instance,
that the domain of the URL has to be injected into the correct part of the explanation
sentence. The challenging part of this is creating each of theses sentences since they
are closely related to the implementation of the heuristics. Therefore they cannot be
created until the heuristics themselves have been implemented next year.

The goal of highlighting this information to the user by displaying it in a different
colour, is coupled with this. Since there are so many possible sentences, it is unfeasible
to hard-code these in the React front-end itself, which would also reduce the system
modularity. Instead, the goal is to craft the React components on the server-side and
have the front-end render them. This has proven challenging within the scope of the
project this year, and due to the strong link with the back-end code, this has also been
allocated to next year’s work.

In addition, since by the end of next year the intention is to publish the tool, I also
aim to polish the user interface for the tool if I have time. This will involve minor
improvements such as animations, text styling and incorporating the feedback given in
Chapter 7.

8.3 Longitudinal Study

In addition, to build an understanding of the efficiency, accuracy and educational value
of the tool for users, the further work for next year will include a longitudinal study
to gather information about these values. This will involve asking a select number of
users to use the tool for a period of time.

To test the efficiency of the tool I can add analytics into the tool, for the purposes of the
study, to measure the page load times in order to measure how long it takes the tool to
calculate and mark each URL on a visited web-page. The intention is that this would
not capture personal user information such as the pages the user is visiting, and only

8.4. Summary 85

the usage statistics. These analytics along with user reported issues will hopefully give
a good understanding of how the tool works.

To evaluate the educational value of the tool I intend to do pre- and post- testing with
the users to evaluate their understanding of malicious URLs, before and after they use
the tool for a significant amount of time. I can use this testing to measure how much
users have learnt when using the tool (and filter this information by how much they
use the tool). This could also be followed up with a later test to measure how well
users retain the information after using the tool, such as that conducted by Canova et
al. [11]. This may not be necessary as the tool is intended to be permanently used by
the users rather than for some finite time such as with the NoPhish app.

This has been planned for next year due to the significant amount of time this will
take. Along with the need for the back-end and user interface components of the tool
to be fully completed before this occurs. Therefore, whilst there has been a significant
amount of work done this year, there is still a generous amount of work planned.

8.4 Summary

In this chapter, I discuss the work planned to be completed next year. This work
includes:

• Implementing the Decision-Making heuristics on the server

• Adding the user interface features related to the heuristics and polishing the UI

• Conducting a longitudinal study after the implementation of the tool is com-
pleted to understand the effectiveness of the tool

I provide an overview of these components and discuss what will be needed to com-
plete each component.

Chapter 9

Conclusion

9.1 Overview

As we have seen, phishing is an increasing security concern, which due to a lack of
knowledge on the primary way it is spread, impacts all users including those with
extensive training experience on the subject. To tackle this problem, my project was to
develop a phishing learning and detection system, to answer the question:

How might we develop a phishing learning and detection tool that will protect from,
and inform users about, malicious URLs?

I chose to develop the system as a browser extension to filter all of a user’s encountered
URLs and chose Chrome as the browser to develop for due to its dominant market
share.

The system was developed for above-average technical users since these are shown
to be the most beneficial group to teach about computer security matters. To better
understand how these users would like to interact with such a system, I conducted
interviews with 17 participants. As a result of these interviews and a prior literature
review, the following requirements were able to be defined:

1. Classifying every URL according to one of three states as part of a traffic light
system

2. Using the browser to prevent the user from visiting any URLs that have been
classified as malicious without explicit user consent

3. Presenting the information on each URL to the user in an understandable way,
both at appropriate points of intervention and on user request

4. That the end built system includes the best practice of software engineering:
maximising efficiency and accuracy

From this basis, I outlined the design of a system, including the design of a URL
analysis algorithm, which was subsequently evaluated by an expert in the field. This

87

88 Chapter 9. Conclusion

allowed me to develop the user interface and infrastructure of the system and complete
the goals outlined for the project this year.

The system was evaluated with regards to its usability, and how well it met the system
requirements. The goal was to assess how suitable and easy to use this system is for
analysing the details of malicious URLs and preventing users from visiting them. To
do this, I conducted a survey of 43 participants who all filled out the SUS survey, eight
Think Alouds and a further expert evaluation.

In conclusion, it would seem that my system is usable and not overly complicated,
which fulfils the goals that were intended to be achieved in the implementation of the
user interaction and system design.

Bibliography

[1] Anne Adams and Martina Angela Sasse. Users are not the enemy. Commun.
ACM, 42(12):40–46, December 1999.

[2] Github AlDanial. cloc - count lines of code. https://github.com/AlDanial/cloc,
[Accessed March 30, 2019].

[3] Alexa. The top 500 sites on the web. https://www.alexa.com/topsites, [Accessed
March 30, 2019].

[4] Kholoud Althobaiti and Kami Vaniea. Is this url safe to click on? supporting
users’ comprehension of phishing features. In Submission, 2018.

[5] Kholoud Althobaiti, Kami Vaniea, and Serena Zheng. Faheem: Explaining urls
to people using a slack bot. 2018.

[6] AngularJS. Angularjs. https://angularjs.org/, [Accessed February 19, 2019].

[7] Aaron Bangor, Philip Kortum, and James Miller. Determining what individual
sus scores mean: Adding an adjective rating scale. J. Usability Studies, 4(3):114–
123, May 2009.

[8] Bitly. Bitly. https://bitly.com/, [Accessed March 30, 2019].

[9] Bootstrap. Bootstrap. https://getbootstrap.com/, [Accessed February 19, 2019].

[10] Canonical. Ubuntu. https://www.ubuntu.com/, [Accessed February 19, 2019].

[11] Gamze Canova, Melanie Volkamer, Clemens Bergmann, and Benjamin Rein-
heimer. Nophish app evaluation: Lab and retention study. 2015.

[12] Softpedia Catalin Cimpanu. Hidden javascript redirect makes phishing
pages harder to detect. https://news.softpedia.com/news/hidden-javascript-
redirect-makes-phishing-pages-harder-to-detect-505295.shtml, [Accessed March
30, 2019].

[13] Kang Leng Chiew, Kelvin Sheng Chek Yong, and Choon Lin Tan. A survey of
phishing attacks: Their types, vectors and technical approaches. Expert Systems
with Applications, 106:1 – 20, 2018.

[14] Cisco. What is cisco anti-spam’s catch rate, false-positive rate, and through-
put? https://www.cisco.com/c/en/us/support/docs/security/email-security-
appliance/118198-qanda-esa-00.html, [Accessed March 27, 2019].

89

90 Bibliography

[15] Lorrie Faith Cranor. A framework for reasoning about the human in the loop.
In Proceedings of the 1st Conference on Usability, Psychology, and Security,
UPSEC’08, pages 1:1–1:15, Berkeley, CA, USA, 2008. USENIX Association.

[16] A. Y. Daeef, R. B. Ahmad, Y. Yacob, and N. Y. Phing. Wide scope and fast
websites phishing detection using urls lexical features. In 2016 3rd International
Conference on Electronic Design (ICED), pages 410–415, Aug 2016.

[17] Material Design. Material design. https://material.io/design/, [Accessed February
19, 2019].

[18] Rachna Dhamija, J. D. Tygar, and Marti Hearst. Why phishing works. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’06, pages 581–590, New York, NY, USA, 2006. ACM.

[19] Inc Dropbox. Dropbox. https://www.dropbox.com/?landing=dbv2, [Accessed
March 30, 2019].

[20] The Apache Software Foundation. The apache software foundation.
https://www.apache.org/, [Accessed February 19, 2019].

[21] Ghostery. Ghostery. https://www.ghostery.com/, [Accessed March 30, 2019].

[22] Medium Gil Fink. Building a chrome extension using react.
https://medium.com/@gilfink/building-a-chrome-extension-using-react-
c5bfe45aaf36, [Accessed February 19, 2019].

[23] Github. Github. https://github.com/, [Accessed February 19, 2019].

[24] Google. Chrome extension getting started tutorial.
https://developer.chrome.com/extensions/getstarted, [Accessed March 27,
2019].

[25] Google. Chrome extension overview. https://developer.chrome.com/static/images/overview/contentscriptarc.png,
[Accessed March 27, 2019].

[26] Google. chrome.webrequest. https://developer.chrome.com/extensions/webRequest,
[Accessed March 27, 2019].

[27] Google. Google. https://www.google.com/, [Accessed February 19, 2019].

[28] Google. Google drive. https://www.google.com/drive/, [Accessed March 30,
2019].

[29] Google. Google site warning. [Accessed 01/02/19].

[30] Google. Safe browsing site status. https://transparencyreport.google.com/safe-
browsing/search?hl=en GB, [Accessed March 30, 2019].

[31] Bruce Hanington and Bella Martin. Universal methods of design: 100 ways to
research complex problems, develop innovative ideas, and design effective solu-
tions. Rockport Publishers, 2012.

[32] Cormac Herley. So long, and no thanks for the externalities: The rational rejec-
tion of security advice by users. In Proceedings of the 2009 Workshop on New

Bibliography 91

Security Paradigms Workshop, NSPW ’09, pages 133–144, New York, NY, USA,
2009. ACM.

[33] HTTrack. Httrack website copier. https://www.httrack.com/, [Accessed March
30, 2019].

[34] HubSpot. Web design 101: How html, css, and javascript work.
https://blog.hubspot.com/marketing/web-design-html-css-javascript, [Accessed
February 19, 2019].

[35] IGN. Ign. https://www.ign.com , [Accessed March 30, 2019].

[36] jQuery. What is jquery? https://jquery.com/, [Accessed February 19, 2019].

[37] JSON. Introducing json. https://www.json.org/, [Accessed February 14, 2019].

[38] Kaspersky. What is a drive-by download? https://www.kaspersky.com/resource-
center/definitions/drive-by-download, [Accessed March 30, 2019].

[39] Katharina Krombholz, Heidelinde Hobel, Markus Huber, and Edgar Weippl. Ad-
vanced social engineering attacks. Journal of Information Security and applica-
tions, 22:113–122, 2015.

[40] Linkedin. Linkedin. https://uk.linkedin.com/, [Accessed March 30, 2019].

[41] Samuel Marchal, Kalle Saari, Nidhi Singh, and N Asokan. Know your phish:
Novel techniques for detecting phishing sites and their targets. In 2016 IEEE 36th
International Conference on Distributed Computing Systems (ICDCS), pages
323–333. IEEE, 2016.

[42] Dean Blackbourn Mark Button, David Shepherd and Martin Tunley. Annual
fraud indicators 2016. Technical report, University of Portsmouth Center for
Counter Fraud Studies, 2016.

[43] MDN. Browser extensions. https://developer.mozilla.org/en-
US/docs/Mozilla/Add-ons/WebExtensions, [Accessed March 27, 2019].

[44] Thomas Nagunwa. Behind identity theft and fraud in cyberspace: the current
landscape of phishing vectors. International Journal of Cyber-Security and Dig-
ital Forensics, 3(1):72–84, 2014.

[45] Netcraft. Paypal security flaw allows identity theft.
https://news.netcraft.com/archives/2006/06/16/paypal security flaw allows identity theft.html,
[Accessed March 30, 2019].

[46] Lily Hay Newman Netcraft. Internet security and data mining - anti-phishing.
https://www.netcraft.com/, [Accessed January 25, 2019].

[47] Jakob Nielsen. Usability engineering. Elsevier, 1994.

[48] node.js. crypto. https://nodejs.org/api/crypto.html, [Accessed February 19,
2019].

[49] Node.js. Node.js. https://nodejs.org/en/, [Accessed February 19, 2019].

92 Bibliography

[50] npm. url-parse. https://www.npmjs.com/package/url-parse, [Accessed February
19, 2019].

[51] University of Dayton. Phishing, scams and spam. https://udayton.edu/udit/safe-
computing/spam.php, [Accessed March 30, 2019].

[52] Shari Lawrence Pfleeger, M Angela Sasse, and Adrian Furnham. From weakest
link to security hero: Transforming staff security behavior. Journal of Homeland
Security and Emergency Management, 11(4):489–510, 2014.

[53] PhishTank. Phishtank. https://www.phishtank.com/, [Accessed February 19,
2019].

[54] Erika Shehan Poole, Marshini Chetty, Tom Morgan, Rebecca E Grinter, and
W Keith Edwards. Computer help at home: methods and motivations for in-
formal technical support. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 739–748. ACM, 2009.

[55] proofpoint. Quarterly threat report q3 2018. Technical report, 2018.

[56] React. React. https://reactjs.org/, [Accessed February 19, 2019].

[57] E. M. Redmiles, A. R. Malone, and M. L. Mazurek. I think they’re trying to tell
me something: Advice sources and selection for digital security. In 2016 IEEE
Symposium on Security and Privacy (SP), pages 272–288, May 2016.

[58] Trygve Reenskaug and James O Coplien. The dci architecture: A new vision of
object-oriented programming. An article starting a new blog:(14pp) http://www.
artima. com/articles/dci vision. html, 2009.

[59] Search Security. email spoofing. https://searchsecurity.techtarget.com/definition/email-
spoofing, [Accessed March 27, 2019].

[60] Wombat security technologies. State of the phish 2019. Technical report, 2019.

[61] Lorrie Faith Cranor Serge Egelman and Jason Hong. You’ve been warned: an
empirical study of the effectiveness of web browser phishing warnings. pages
1065–1074, 2008.

[62] Steve Sheng, Bryant Magnien, Ponnurangam Kumaraguru, Alessandro Acquisti,
Lorrie Cranor, Jason Hong, and Elizabeth Nunge. Anti-phishing phil: The design
and evaluation of a game that teaches people not to fall for phish. volume 229,
pages 88–99, 01 2007.

[63] Medium Subodh Garg. How to build chrome extension with angularjs & googles
natural language api. https://medium.com/@subodhgarg/how-to-build-chrome-
extension-with-angularjs-googles-natural-language-api-370f9a4953e, [Accessed
February 19, 2019].

[64] Symantec. Catch rate and effectiveness of spam caught by gateway prod-
ucts. https://support.symantec.com/en US/article.TECH195964.html, [Accessed
March 27, 2019].

[65] Symantec. Internet security threat report. Technical report, 2018.

Bibliography 93

[66] WH Symantec. Advanced persistent threats: A symantec perspective. Symantec
World Headquarters, 2011.

[67] tetraph. Oauth 2.0 and openid, covert redirect vulnerability.
http://tetraph.com/covert redirect/oauth2 openid covert redirect.html, [Ac-
cessed March 27, 2019].

[68] the balance everyday. Internet browsers: A layman’s guide to how they
work. https://www.thebalanceeveryday.com/what-is-internet-browser-892819,
[Accessed March 30, 2019].

[69] tripwire. 6 common phishing attacks and how to protect against them, the state
of security. https://www.tripwire.com/state-of-security/security-awareness/6-
common-phishing-attacks-and-how-to-protect-against-them/, [Accessed March
30, 2019].

[70] Unshorten.link. Unshorten.link. https://unshorten.link/, [Accessed February 14,
2019].

[71] All About UX. Methods for expert evaluation.
https://www.allaboutux.org/expert-methods, [Accessed March 28, 2019].

[72] Melanie Volkamer, Karen Renaud, Benjamin Reinheimer, and Alexandra Kunz.
User experiences of torpedo: Tooltip-powered phishing email detection. Com-
puters & Security, 71:100 – 113, 2017.

[73] W3Counter. Browser & platform market share.
https://www.w3counter.com/globalstats.php, [Accessed March 27, 2019].

[74] w3schools.com. Node.js http module. https://www.w3schools.com/nodejs/nodejs http.asp,
[Accessed February 19, 2019].

[75] w3schools.com. w3schools.com. https://www.w3schools.com/, [Accessed
February 19, 2019].

[76] Jingguo Wang, Yuan Li, and H Raghav Rao. Overconfidence in phishing email
detection. Journal of the Association for Information Systems, 17(11):759, 2016.

[77] Rick Wash and Molly M. Cooper. Who provides phishing training?: Facts, sto-
ries, and people like me. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, CHI ’18, pages 492:1–492:12, New York, NY,
USA, 2018. ACM.

[78] Colin Whittaker, Brian Ryner, and Marria Nazif. Large-scale automatic classifi-
cation of phishing pages. In NDSS ’10, 2010.

[79] Alma Whitten and J. D. Tygar. Why johnny can’t encrypt: A usability evaluation
of pgp 5.0. In Proceedings of the 8th Conference on USENIX Security Sympo-
sium - Volume 8, SSYM’99, pages 14–14, Berkeley, CA, USA, 1999. USENIX
Association.

[80] Whois. Whois domain lookup. https://www.whois.com/whois/, [Accessed March
30, 2019].

94 Bibliography

[81] Ryte Wiki. Anchor tag. https://en.ryte.com/wiki/Anchor Tag, [Accessed Febru-
ary 19, 2019].

[82] Wikipedia. Email attachment. https://en.wikipedia.org/wiki/Email attachment,
[Accessed March 30, 2019].

[83] WIRED. Google says its ai catches 99.9 percent of gmail spam.
https://www.wired.com/2015/07/google-says-ai-catches-99-9-percent-gmail-
spam/, [Accessed March 27, 2019].

[84] Lily Hay Newman Wired. Google wants to kill the url.
https://www.wired.com/story/google-wants-to-kill-the-url/, [Accessed Jan-
uary 25, 2019].

[85] Min Wu, Robert C. Miller, and Simson L. Garfinkel. Do security toolbars actually
prevent phishing attacks? In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’06, pages 601–610, New York, NY, USA,
2006. ACM.

[86] Weining Yang, Aiping Xiong, Jing Chen, Robert W Proctor, and Ninghui Li.
Use of phishing training to improve security warning compliance: evidence from
a field experiment. In Proceedings of the Hot Topics in Science of Security:
Symposium and Bootcamp, pages 52–61. ACM, 2017.

**

Appendix A

Interview Materials

95

RT Number: #3154

‘Phishing Detection and Learning Tool’ Consent Form

This project aims to gather information around users’ understanding of URLs (links)

and how they approach both malicious URLs and phishing scenarios.

Today I will be interviewing you about your knowledge of URLs, and the steps you

take when presented with malicious URLs. During this interview, I will show you

descriptions and screenshots of URLs to discuss your knowledge on the topic. I will

then discuss ideas with you about the design and implementation of a proposed

Phishing tool, in relation to how you currently deal with malicious URLs.

I will be audio recording during the interview. If you feel uncomfortable

about this at any time, you may stop the recording or tell me that the next bit

should not be quoted.

This study will be used to learn about phishing and specifically malicious URL

engagement, so we can design a tool that is likely to be helpful to students and

professionals. The audio and transcripts will be kept for a maximum of one year and

then destroyed. Anonymized quotes or short audio clips may be retained longer for

use by future students on this project.

The project is supervised by Dr Kami Vaniea (kvaniea@inf.ed.ac.uk) and

conducted by myself, Stephen Waddell (s1346249@sms.ed.ac.uk).

[] I understand that I am participating in a study as part of the “Evaluate the usability

of a security or privacy tool” project.

[] I am willing for the audio to be digitally recorded and transcribed for the use as part

of the research project

[] The researcher may use audio/ literal quotes from the interview in publications

provided that the quote is anonymised and cannot be connected back to me.

Participant: ________________________________ Date: __________________

Researcher: Stephen Waddell Date: __________________

Phishing Interview Contents

Start with Consent Form, after signing:

Hi *Participant*, thank you very much for agreeing to participate in our study today on *date* and
signing the consent form. It is currently *time*.

Brief interview to cover participant information

To start off, I have a few background questions about yourself and your knowledge of Computer
Security:

● Are you currently a student?
○ Whereabouts and what do you study?
○ What year of study are you in?

● What technical experience do you believe you have?
○ If you had to describe according to the scale, which would you choose:

(None, Little, Average, Above Average, Expert)
● What experience with Computer Security do you have?

○ For example, have you taken a class in computer security, or has your job offered
training in things like identifying malicious communications?

○ Description​ of Computer Security - provided if participant is confused about
terminology at this point

○ If you had to describe this according to the scale, which would you choose:
(Beginner, Intermediate, Expert)

Thank you for your that information *participant name*.

Overview for participant of what specifics are required

Just give you an overview of the specifics of the study:

As you might or probably know already: Computer security, also known as cybersecurity or IT
security, is the protection of information systems from theft or damage to the hardware, the
software, and to the information on them, as well as from disruption or misdirection of the services
they provide . 1

1 https://en.wikipedia.org/wiki/Computer_security

So what will be focusing on today? Well I am developing a phishing detection and learning tool as a
means to help train users about, and protect users from, malicious phishing. The purpose of the
interviews is to help gather requirements for this tool by better understanding how potential users
think and engage with phishing problems.

As part of this interview, we will be covering a number of topics: Phishing, URLs and the Phishing
Detection tool itself. As part of this I will be presenting images relating to these topics for discussion,
and would like to ask some questions about how you might interact with a proposed phishing
detection tool.

Phishing Overview

1. What do you understand by the term Phishing?

Thank you very much for you answer. I can now give you an official definition of phishing.

Phishing is the fraudulent practice of sending emails purporting to be from reputable companies in
order to induce individuals to reveal personal information, such as passwords and credit card
numbers. Phishing is a form of fraud in which an attacker masquerades as a reputable entity or 2

person in email or other communication channels. The attacker uses phishing emails to distribute
malicious links or attachments that can perform a variety of functions, including the extraction of
login credentials or account information from victims. 3

So I am now going to begin showing you some images. For each image, please tell me whether
you think the image is phishing or not and why.

Begin presenting images - show 3 images.

Thank you for your advice, I will now give you the answers for each of these images.

Begin presenting and discussing the same images.

URLs Overview

2. What do you understand by the term URL?

Thank you very much for your answer. I can now give you an official definition of URLs.

2 https://en.oxforddictionaries.com/definition/phishing
3 https://searchsecurity.techtarget.com/definition/phishing

If you've been surfing the Web, you have undoubtedly heard the term URL and have used URLs to
access HTML pages from the Web. A Uniform Resource Locator (URL), colloquially termed a web 4

address, is a reference to a ​web resource​ that specifies its location on a ​computer network​ and a
mechanism for retrieving it. 5

URLs typically consist of three pieces:

1. The name of the protocol used to transfer the resource over the Web.
2. The name of the machine hosting the resource.
3. The name of the resource itself, given as a path. 6

So I am now going to begin showing you some images. For each url, please tell me whether you
think the image is phishing or not and why.

Begin presenting images - show 2 images.

Thank you for your responses, I will now give you the answers for each of these images.

Begin presenting and discussing the same images.

Phishing Detection Tool

Thank you for your help during these topic overviews, I would now like to discuss your thoughts on
the Phishing Detection Tool itself.

● What is your browser of choice?
● What kind of features do you think would be useful in a phishing tool?

User Interaction Questions

As I said previously, I am building a Phishing Learning and Detection tool, and an important part of
this is how this information is presented to yourself as a user. In a proposed phishing tool, how
would you like to see the information about phishing presented to you?

The intention is for this tool to be developed as a Chrome extension on the Chrome browser. The
possible User Interface (UI) elements that can be included in a Chrome extension are:

point to each UI element in the browser when explaining
● The extension icon at the top of the browser
● A badge which goes over the extension icon

4 http://supportweb.cs.bham.ac.uk/documentation/java/tutorial/networking/urls/definition.html
5 https://en.wikipedia.org/wiki/URL
6 https://www.w3.org/TR/WD-html40-970708/htmlweb.html

● A popup which can display more detailed information
● A context menu entry which occurs when you right click
● An alert box which pops-up in the center of the page to display information
● Full web-pages that the extension can open

Which combination of UI elements do you think would be most useful to you for displaying the
phishing detection information to yourself?

A major component of the tool is training you as a user more about urls. How do you think this
information could be presented to you to best help you learn about urls?

Do you think you would need further information on how this tool works if you were to use it? If so,
what information would you need and how would you like this information to be presented to you?

How likely would you be to use the tool in the future? Please answer according to the scale:

● Not at all likely
● Not very likely
● Somewhat likely
● Fairly likely
● Extremely likely

For what reason, did you select *insert user’s answer*?

Thanking the Participant and Optional Advice

Thanks very much for your time today, *participant’s name*, we greatly appreciate your help. If you
would like we can give you some pointers about what makes a UI easier to use to conclude the
interview.

1. Check for spelling mistakes: ​Companies are serious about their email communications.

Legitimate messages usually do not have major spelling mistakes or poor grammar. Read

your emails carefully and report anything that seems suspicious.

2. Analyze the salutation:​ Is the email addressed to a vague “Valued Customer?” If so, watch

out—legitimate businesses will often use a personal salutation with your first and last name.
3. Beware of urgent or threatening language in the subject line:​ Invoking a sense of

urgency or fear is a common phishing tactic. Beware of subject lines that claim your

“account has been suspended” or your account had an “unauthorized login attempt.”

4. Review the signature: ​Lack of details about the signer or how you can contact a company

strongly suggests phishing. Legitimate businesses always provide contact details. 7

7 https://blog.returnpath.com/10-tips-on-how-to-identify-a-phishing-or-spoofing-email-v2/

101

Figure A.1: Presented interview phishing image - 1

102 Appendix A. Interview Materials

Figure A.2: Presented interview phishing image - 2

103

Figure A.3: Presented interview phishing image - 3

104 Appendix A. Interview Materials

Figure A.4: Presented URL image - 1

Figure A.5: Presented URL image - 2

Appendix B

Interview Results

105

106 Appendix B. Interview Results

Figure B.1: Interview Quantitative Analysis

107

Figure B.2: Interview Thematic Analysis - Phishing Definition

108 Appendix B. Interview Results

Figure B.3: Interview Thematic Analysis - Phishing Images

Figure B.4: Interview Thematic Analysis - URL Definition

109

Figure B.5: Interview Thematic Analysis - URL Images

Figure B.6: Interview Thematic Analysis - Features in the Phishing Tool

110 Appendix B. Interview Results

Figure B.7: Interview Thematic Analysis - General Phishing tool UI Features

Figure B.8: Interview Thematic Analysis - Training or Intervention Presentation

Figure B.9: Interview Thematic Analysis - Help Presentation

111

Figure B.10: Interview Thematic Analysis - Likelihood to use

Appendix C

Additional Paper Designs

113

114 Appendix C. Additional Paper Designs

Figure C.1: Help and Settings pages

Figure C.2: Tutorial page

Appendix D

Phishing Heuristics Proposal

115

UNIVERSITY OF EDINBURGH

Design Proposal for a User-facing Phishing
Learning and Detection Tool

Stephen Waddell

March 28, 2019

1

CONTENTS

1 Introduction 3
1.1 Goals of the tool . 3
1.2 Proposal Outline . 3

2 Overall Algorithm 5
2.1 Decision Making Algorithm . 5
2.2 Limitations . 6

3 Safety Metrics 7
3.1 Metrics . 7
3.2 Approach . 7

4 URL Parsing Features 8
4.1 Manipulation Tricks . 8

5 Domain Features 12

6 Page Features 13

7 Data Sources 15
7.1 Blacklists . 15
7.2 Reputation Ranking . 15
7.3 URL Information . 15

7.3.1 Required regex . 16
7.4 Domain Information . 16

7.4.1 Top-level domains . 16
7.4.2 WHOIS Database . 16

7.5 Page Information . 16
7.5.1 Certificate Validation . 17

2

1 INTRODUCTION

In developing a Phishing and Learning Detection tool to be deployed onto the Google Chrome
platform as an extension, I have prepared an overview proposal of the back-end functional-
ity I believe will be needed as part of this. This proposal covers a number of different points
about the functionality required to classify a URL into a a respective safety category.

1.1 GOALS OF THE TOOL

The primary design goals of this tool are as follows:

Goals Justification

Classifying every URL: those present in any
given page, the page URL itself and any the
user is directed to outside the browser

This intended to be a comprehensive
solution to phishing and other security
exploits which employ malicious URLs

Using the browser to prevent the user
visiting any URLs that have been classified
as malicious without user invention.

This intended to cut down unintentional
direction to malicious URLs, caused when
on platforms such as email

Presenting the information on each URL to
the user in an understandable way, at
appropriate points of intervention

To encourage the user to learn through
embedded training: allowing users to catch
URLs themselves and reduce their own
danger

That the end built system includes best
practice of software engineering:
maximising efficiency and accessibility

That the system works effectively as and
when required, such that users are not do
not remove it due to efficiency concerns

Table 1.1: Justification of goals

1.2 PROPOSAL OUTLINE

To achieve these design goals, this proposal outlines a heuristic-based algorithm for classi-
fying a URL into a one of three states: Safe (High likelihood of safety), Warn (Possible cause
for concern) and Alert (High risk of danger with URL). Each of these form the basis of a traffic
light system (Green, Amber and Red respectively) which informs the user about the relative
safety of each URL. In this proposal document, each of these states will be referred to by their
respective colour.

Additionally, the proposal also covers the a breakdown of each possible issue with a URL.
For each of these, an explanation of the issue and a proposed method is outlined to deal with
that issue. The proposal also considers how the data will be sourced to solve each possible

3

issue.

The front-end of this tool, which is not outlined in this proposal, includes the following fea-
tures:

• active intervention when a user clicks a red URL (in the form of a site warning middle
man)

• annotating links on each site with a badge representing the safety colour of each URL

• a breakdown of each URL using the a research based URL report[1]

The classification of each URL is used to create the appropriate User Interface display for
each URL. One of the secondary goals of the tool is to achieve as low a false positive rate as
possible to maintain user engagement with the tool.

Feedback on the plans outlined in this report would be much appreciated.

4

2 OVERALL ALGORITHM

2.1 DECISION MAKING ALGORITHM

The algorithms input will be the given URL and all required information needed to consider
the classification of the URL.

The algorithm begins by considering each case where a URL might be considered purely
green (undoubtedly safe). If any of these indicators, such as inclusion on a reputable whitelist,
are true then the URL is classified as safe and the algorithm returns that it is a green state.
Otherwise the algorithm will analyse the URL and classify the given URL as having either a
yellow or red state.

To achieve this, the algorithm analyses each set of features using the metrics outlined in the
subsequent chapters. Each set of features is a useful indicator of a URL’s safety, which can be
used to classify how likely a given URL might be phishing. These indicators are referred to as
issues in this proposal, and each of these issues is categorised into one of three groups: these
being known, possible and no issue (which each represent a decreasing priority level).

The features that are the focus of this proposal are:

• URL parsing features

• Domain features

• Page features

Content Features could be used in addition to this but are not favoured in this proposal due
to the associated high risk of parsing the content of malicious sites.
To classify the URL a count is kept of each issue that arises from the data parsing. This is
matched with threshold values to classify the URL.

Known Issues Possible Issues Output
>=1 >=0 Red

0 >=5 Red
0 <5 Warn
0 0 Green

Table 2.1: Thresholds for Output

The resulting output is then feed back into the system for use by the User Interface. For
each result, the state of the URL is returned along with the information used to calculate that
state. This information is displayed to the user in the breakdown of the URL. For those in
a green state, the reason indicating its safety is returned and if it is red or yellow, the issues
included in the URL are also returned.

5

2.2 LIMITATIONS

This approach favours limiting the number of URL’s classified as yellow as much as possible.
This is because one of the major benefits of the tool is the tool’s ability to actively intervene
to prevent the user from visiting a malicious site. This only occurs for URLs classified as the
red state. At this point users benefit from embedded training as they have the break-down of
the URL information displayed to them, in a real-time scenario.

To limit the number of URLs in the yellow state, the algorithm has lower thresholds for classi-
fying the URLs as a red state. One of the key limitations of this approach is that it potentially
creates a higher false positive rate for the user. Active intervention with a high false positive
rate has been shown to have a reduced effectiveness over-time[3].

To resolve this problem, the intention is to implement a personal whitelist for users to main-
tain. Users will be able to update this whitelist with URLs when they are presented as part of
this tool. This is a constant element of the UI and is particularly useful for false positive URLs
classifies as a red state. After the user whitelist a site it will not be included in the red state, in-
stead it will be given a amber state (where active intervention does not occur but the user will
still be made aware they are not entirely safe). This should reduce the false positive rate over
time. In user trials, the ideal outcome would be that the tool tailors itself to users common
sites over time, only showing sites that are concerning and the user has never visited before.
This would therefore reduce the false positive rate over time.

Known Issues Possible Issues Personal Whitelist Output
>=1 >=0 False Red
>=1 >=0 True Warn

0 >=5 False Red
0 >=5 True Warn
0 <5 False Warn
0 0 False Green

Table 2.2: Thresholds for Output

Another suggestion to improve the false positive rate, is that the users could be allowed to tog-
gle the threshold for possible issues being classified in the red state. In either case, to ensure
the needless use of the blacklist, particularly in cases where the URL has been blacklisted, the
user will be asked for additional approval. In the User Interface this may involve presenting
an alert pop-up box being displayed asking them if they are sure they wish to continue.

6

3 SAFETY METRICS

It is very hard to come up with a full proof set of safety metrics. Comparatively it is easier to
verifiably say a site is malicious rather than safe. There are however some indicators that are
useful to suggest a site is safe.

In the proposed algorithm, there are currently two ways that a site can be designated as safe.
The first is that the site has no known or possible issues: this mean it has not bee n flagged by
any of the heuristics. The second is that it matches against one or more safety metrics.

3.1 METRICS

The first metric is a URL’s inclusion in the list of Alexa Top sites (7.2) and is not known to be
a hosting service for other sites. The Alexa Top sites is a strong indicator of the most popu-
lar sites and popularity is an indicator of safety. This is because users do not regularly visit
or return to sites known to be malicious. However, some of the most popular internet sites
are known to host other sites such as wordpress.com. Wordpress, for instance, can be used to
host other sites which contain malicious content so classifying these sites as safe would be
inaccurate. Therefore the Alexa Top Sites results will be filtered using known content hosting
sites and other potentially malicious sites by checking their occurrences on blacklists such as
hpHosts (7.1).

An additional metric is the PageRank of the website. This is based on backlinks, which are
incoming links to a webpage. By taking a measure of how many quality backlinks a webpage
has it indicates how popular that webpage is. This is a metric which has been used in major
search engine providers in the past to indicate how high a web page should be listed in its
search results.

Looking at how often the site is shared on social media is another useful metric. Sites such
as Facebook and Twitter regularly include links to external sites which are shared between its
users. This is an indicator of a sites popularity, as multiple shares between users suggests it is
safe since they are encouraging others to visit it.

3.2 APPROACH

The idea is to combine each of these metrics and use appropriate thresholds to determine if a
site is popular enough to be classified as safe. By applying these metrics to each website, and
ensuring each page’s URL is safe in the site, we can mark sites containing multiple webpages
as safe without analysing each URL, provided they do not leave that domain. The idea behind
this is to increase efficiency in each site. This should not pose many problems providing the
metrics are applied correctly, as there is a much smaller chance of being attacked on a site
when swapping between pages from distinct sites [insert reference].

7

4 URL PARSING FEATURES

This focuses on parsing the URL into its distinct components and use these to pick out indi-
cators in the URL itself which might suggest it is malicious.

Processing each of these heuristics typically involves using natural language tools such as
regex to match the contents of each URL against any concerning flags. These often involve
the request of some data in order to to complete each check accurately; the limited amount
of required libraries means these checks can be preformed locally on a users machine. Each
metric relates to a issue level based on how much of an indicator that metric is.

4.1 MANIPULATION TRICKS

Trick Explanation Check Data Needed Issue
Too many
subdomains

Can redirect
user to
alternative site

regex search all
’.’ characters
and take a
count of
resulting array

Amount of
common URL
domains; The
URL domain

Possible

Typosquatting
Popular
Domains

Targets users
who
incorrectly
type a web
address into
their browser

Similarity
measure
between host
name and
popular
domains

Appropriate
similarity
measure (7.3);
list of most
popular
domains

Known

Unusual top
level domain
(Camouflage)

Top level
domain is not
one of the most
commonly
used ones

Match top level
domain with a
list of most
popular
domains

List of most
popular top
level domains

Possible

Digit
replacement of
letters

Masking the
direction of the
URL by
replacing
characters
such as ’o’ with
similar digits
such as ’0’

Use regex to
count the
amount of
digits in the
hostname, and
compare to the
average or
typical

Typical
amount of
numbers in a
URL hostname

Possible

Table 4.1: Manipulation Tricks

8

Trick Explanation Check Data Needed Issue
Shortened
URLs

URLs which
have been
shortened
means users
are unable to
pick out key
characteristics
from a URL

Use the
shortener
services to
follow or
expand the
URL and
express this to
user; express to
the user and
run analytics
on expanded
URL (if the
shortened URL
is safe)

Access to
shortener APIs

Possible

UTF8 encoding
substitution

Substituting
identical
looking
characters
from different
alphabets such
as English and
Cyrillic

Use a language
detector to
check if the
detected URL
language
matches with
the user’s local
language

Language
detector;
Access to
default local
language of
browser

Known

Use of I.P.
address, hex or
decimals

Use of
non-standard
information
makes the URL
harder to
understand
and can be
used to
confuse the
user

Use specific
regex for
checking the
hostname for
each of these
elements

IP address
regex (7.3.1);
Hex regex
(7.3.1);
Decimal Regex
(7.3.1)

Known

Substituting
normal
characters

Characters
such as ’w’ can
be replaced
with ’vv’

Check the work
similarity with
any suggested
search engine
search
replacement

API to do
search engine
search (7.5)
and/or get
replacement
text

Known

Mislead Expected
company
name is
embedded
somewhere in
the URL but
not destination

Search the URL
for a list of the
most popular
company
names

List of most
popular
company
names

Known

Table 4.2: Manipulation Tricks 9

Trick Explanation Check Data Needed Issue
Embedded
URL in query
string

Open
redirection is
detected based
on the
existence of a
URL in the
query string

Use regex to
match URL any
possible the
query string

Access to URL
query string;
URL match
regex

Possible

Number of
http/https

Some attackers
add additional
http to trick the
user about the
start of the
URL

Search the URL
using regex to
get a count of
each
occurrence

Regex to match
protocols
across the URL

Possible

Suggestive
word tokens

Some words
only exist in
phishing URLs
such as
"confirm",
"banking",
"account", and
"signin"

Search using
regex for any
words in a list
of known
suggestive
word tokens

List of
suggestive
word tokens

Known

Suspicious
characters in
the URL

The existence
of ’at’ (@)
means
criminals use
this to mislead
users or
characters
such as hyphen
(-)

Use of regex to
check for any
suspicious
characters in
the URL

list of
suspicious
characters and
their
occurrences
[4]; regex to
check whole
URL

Known

Encryption HTTPS
connection is
more secure.
Incompetent
feature but
useful for
safety

Check the
protocol is
https or http
through string
comparison

access to the
URL protocol;

Known

Non-standard
port

Whether the
port belongs to
a standard
HTTP ports:
80, 8080, 21,
4143, 70 and
1080

Match the port
type to a given
port in the URL
and check the
protocol and
the port match

list of common
ports; access
the URL port;
access the URL
protocol

Known

Table 4.3: Manipulation Tricks
10

Trick Explanation Check Data Needed Issue
Use of atypical
deliminator
character

’.’ is the typical
deliminator
character,
example is a
’home-
depot.com’
rather than
’homede-
pot.com’

Search for
deliminator
characters
other than ’.’
using regex

list of
deliminator
characters;
regex to search
for these

Possible

Unusually long
URL hostname

URL
hostnames that
are overly long
can be used to
mask the true
destination of
the URL

Count the
amount of
characters in
the URL, and
compare to the
typical URL
length

Typical length
of a URL
hostname[2]

Possible

Different Top
Level Domain
(TLD)

The URL has
the same
domain as a
popular site
but a different
top level
domain

Compare both
the popular
TLD with the
URL

Popular
domain list;
hostname of
popular
domain; top
level domain of
each

Known

TLD out of
position

The
appearance of
a popular TLD
such as "com"
in the
subdomain
deludes users
into believing
this is the end
of the
hostname.

Check if the
URL
subdomain
includes any
popular
subdomains
using regex

List of popular
TLDs; regex to
match TLDs in
subdomain;
access to the
URL
subdomain

Known

Table 4.4: Manipulation Tricks

11

5 DOMAIN FEATURES

Domain features focus on detecting phishing domain names, such as by checking the details
of the domain’s registration status. In doing passive queries related to the domain name, we
can detect indicators based on the known trends of malicious URLs. To handle each of these
indicators, external data using API’s must be requested to reason what the status of a given
URL is.

Fact Explanation Check Data Needed Issue
Domain/I.P.
Blacklisted

If info is
blacklisted it is
unlikely to be
safe

Store blacklist
as part of local
database:
query blacklist
database tables
for URL
presence

Stored
blacklists;
Chrome
Database APIs

Known

Days of
domain
registration

Phishing sites
tend to be
newly created

Store WHOIS
information as
a database:
query the
database to get
the creation
data of the
website

Current date;
Threshold
amount of days
to check URL
uptime;
Database or
API with
WHOIS Info

Possible

Registrant
name hidden

This can
indicate the
individual doe
not wish to be
found and a
crime is afoot

Query the
WHOIS
database for
the registrant
name:
compare the
registrant
name to check
if it has been
hidden

Get an idea of
what a hidden
registrant looks
like

Possible

Domain match The domain
exists in the
WHOIS record
or the domain
is in the URL
matches the
domain in
WHOIS

Check if the
domain exists
in the WHOIS
database by
querying it

WHOIS
database API

Known

Table 5.1: Domain Facts

12

6 PAGE FEATURES

Page features use information about pages which are calculated using reputation ranking
services. These are some of the most useful indicators of a URL’s safety if they show a site is
popular, but can equally be an indicator of phishing where a site is shown to be unpopular.
In this sense, they give information about how reliable a site is.

Each of these heuristics also requires the use of a number of external data sources to be able
to accurately function as a heuristic.

Fact Explanation Check Data Needed Issue
Search Results Phishing

website have
short life
therefore,
usually they
are not in the
result, besides,
not frequent in
the results

Use an api to
get the first
x(20)
[reference
needed to
indicate
amount] and
check if the
result is there

API to do a
search from
command line;
A means to
parse search
results

Known

Number of
redirections

Phishing sites
tend to be
newly created

Use an api to
check the
amount of
redirects in a
given URL

API to do this
redirect search;
Build
understanding
of what output
will look like

Known

Location The physical
location of the
registrant
usually differs
from the
physical ones

Use a web
service to
look-up the
location of the
corresponding
service to the
website; Check
this location
with locations
that are known
to host a high
amount of
malicious
contents

List of places
that are known
to host more
malicious
content;
Loo-up web
service

Possible

Table 6.1: Page Facts

13

Fact Explanation Check Data Needed Issue
Global
Popularity

The rank that
Alexa assigns
to domains

Get the global
popularity of
the site of
using the Alexa
Api; Check
threshold to
see if this is low

Alexa Global
popularity api

Known

Page Rank The relative
importance of
a page within
other web
pages

Use page rank
api; Check if
the page rank
is high or
above
threshold

PageRank api Possible

Social
Reputation

The link
popularity
among social
media users
such as Twitter
and Facebook

Use social
reputation api;
Check if social
reputation is
low

Social
reputation api

Possible

Table 6.2: Page Facts

14

7 DATA SOURCES

There are two specific goals when it comes to requesting data from various sources. The first
is security and privacy: each API transmission of a plain text URL, could expose their pattern
of website behaviour to potential malicious actors. Therefore one goal in collating of requisite
data, is to limit this by focusing on data which can be collected and stored internally within
the tool. The second goal is efficiency: if the time taken to consider each URL is too great then
the response time of the tool might be too slow for the user. This can be handled in multiple
ways such as asynchronous URL prepossessing. However, requesting, where possible, data
such as blacklists in bulk and storing them locally in a tool accessible database, is a means
to handle this from a data perspective. The advantage of this is to prevent outside awareness
of user requests. This also allows the developers to store visited user URLs more securely i.e.
hashed and salted.

Alongside this, using multiple sources of data is also key to prevent an over-reliance on any
one particular data source and a corruption of the tool’s accuracy. This could lead to infor-
mation being skewed, in turn compromising user safety.

7.1 BLACKLISTS

Google Transparency Report:
https://transparencyreport.google.com/safe-browsing/search?hl=enG B
Dat abase −D/L : https://developers.google.com/safe-browsing/v4/

PhishTank :
https://www.phishtank.com/

hpHosts :
https://hosts-file.net/
Dat abase −D/L : https://hosts-file.net/?s=Download

7.2 REPUTATION RANKING

Alexa:
https://www.alexa.com/topsites

The Moz Top 500:
https://moz.com/top500

7.3 URL INFORMATION

Levenshtein Distance:
https://en.wikipedia.org/wiki/Levenshteind i st ance

15

7.3.1 REQUIRED REGEX

Hex regex:
https://stackoverflow.com/questions/9221362/regular-expression-for-a-hexadecimal-number

Decimal regex:
https://stackoverflow.com/questions/11500482/regex-to-find-integers-and-decimals-in-string

I.P. address regex:
https://www.regular-expressions.info/ip.html

7.4 DOMAIN INFORMATION

7.4.1 TOP-LEVEL DOMAINS

W3Techs:
https://w3techs.com/technologies/overview/topl eveld omai n/al l

Lifewire :
ht t ps : //w w w.l i f ewi r e.com/most − common − t ld s − i nter net −domai n −extensi ons −817511

7.4.2 WHOIS DATABASE

WHOIS Database API:
https://www.whoisxmlapi.com/

7.5 PAGE INFORMATION

Search Engine Spell-check:
https://azure.microsoft.com/en-gb/services/cognitive-services/spell-check/

Google search command line:
https://www.npmjs.com/package/node-googler

URL Redirect Checker:
https://httpstatus.io/help

Check Host Net:
https://check-host.net/ip-info?host=www.google.com

16

7.5.1 CERTIFICATE VALIDATION

Certificate Info:
https://chrome.google.com/webstore/detail/certificate-info/jhldepncoippkjgjkmambfglddmjdmaj
The API behind this extension is possible to use. It only uses basic certificate validation however.

17

REFERENCES

[1] K. Althobaiti and K. Vaniea. Is this url safe to click on? supporting users’ comprehension of
phishing features. "[Unpublished]", 2018.

[2] S. Garera, N. Provos, M. Chew, and A. D. Rubin. A framework for detection and measure-
ment of phishing attacks. In Proceedings of the 2007 ACM Workshop on Recurring Mal-
code, WORM ’07, pages 1–8, New York, NY, USA, 2007. ACM.

[3] M. Wu, R. C. Miller, and S. L. Garfinkel. Do security toolbars actually prevent phishing
attacks? In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’06, pages 601–610, New York, NY, USA, 2006. ACM.

[4] G. Xiang, J. Hong, C. P. Rose, and L. Cranor. Cantina+: A feature-rich machine learning
framework for detecting phishing web sites. ACM Trans. Inf. Syst. Secur., 14(2):21:1–21:28,
Sept. 2011.

18

Appendix E

System Usability Scale Survey

135

Feedback Survey

Strongly
disagree

Strongly
agree

1. I think that the target audience would like to use
this system

1 2 3 4 5

2. I found the system unnecessarily complex 1 2 3 4 5

3. I thought the system was easy to use 1 2 3 4 5

4. I think that I would need the support of a technical
person to be able to use this system

1 2 3 4 5

5. I found the various functions in this system were
well integrated

1 2 3 4 5

6. I thought there was too much inconsistency in this
system

1 2 3 4 5

7. I would imagine that most people would learn to use
this system very quickly

1 2 3 4 5

8. I found the system very cumbersome to use 1 2 3 4 5

9. I felt very confident using the system 1 2 3 4 5

10. I needed to learn a lot of things before I could get
going with this system

1 2 3 4 5

What is your gender?

� Male
� Female
� Prefer not to answer
� Other .

What year are you?

� UG1
� UG2
� UG3
� UG4 / MInf
� MSc
� Other .

1

Appendix F

Think Aloud Materials

137

‘Phishing Detection and Learning Tool’ Consent Form

This project aims to gather information about the usability of a developed
Phishing Learning and Detection tool through user evaluation.

Today we will be doing a think aloud study to understand your thoughts on the
usability of the given tool. During this study, I will be asking you to interact with
both the tool and an example webpage, and talk about how you interact with
them. At the end of the think alouds, there will be an opportunity to discuss
your general thoughts and opinions about the tool based on your experiences
with it.

We will be audio recording during the study. If you feel uncomfortable
about this at any time, you may stop the recording or tell us that the next bit
should not be quoted. There will not be any compensation for participation in
this study beyond the knowledge that you will have advanced science.

This study will be used to gather usability information about the tool, this
information will be later used in as part of my dissertation. The audio and
transcripts will be kept for a maximum of one year and then destroyed.
Anonymized quotes or short audio clips may be retained longer for
use by future students on this project.

The project is supervised by Dr Kami Vaniea (kvaniea@inf.ed.ac.uk) and
conducted by myself, Stephen Waddell (s1346249@sms.ed.ac.uk).

[] I understand that I am participating in a study as part of the “Evaluate the
usability of a security or privacy tool” project.

[] I am willing for the audio to be digitally recorded and transcribed as part of
this research project

[] The researcher may use ​audio/ literal quotes ​from the study in future
works provided that the quotes are anonymised and cannot be connected back
to me.

Participant: _______________________________ Date: ____________
Researcher: ​ Stephen Waddell​________________ Date: ____________

Phishing Think Aloud

Hello my name is Stephen. Today you will be interacting with a phishing learning and detection tool that I
have developed as a chrome browser extension, working on an example webpage. Thank you very much
for signing the consent form. Try your best to complete all the tasks, but your participation today is purely
voluntary, you may stop at any time. The purpose of this tool is to detect malicious phishing and protect
and inform users of this. Please remember we are testing this tool’s capabilities, not your own ability.

In this observation, we are interested in what you talk about as you perform the tasks we are asking you to
do. In order to do this, I am going to ask you to talk aloud as you work on the tasks. What I mean by “talk
aloud” is that I want you to tell me everything you are thinking from the first time you see the statement of
the task till you finish the task. I would like you to talk aloud constantly from the time I give you the task till
you have completed it. I do not want you to try and plan out what you say or try to explain to me what you
are saying. Just act as if you were alone, speaking to yourself. It is most important that you keep talking. If
you are silent for a long period of time, I will ask you to talk. Do you understand what I want you to do?

Wait for a response

Good. Now we will begin with some practice problems. First, I will demonstrate by talking aloud while I
solve a simple problem: “How many windows are there in my house?”

[Demonstrate thinking aloud]

Wait for response

Now it is your turn. Please talk aloud as you multiply 120 * 8.

[Let them finish]

Good. Now, those problems were solved all in our heads. However, when you are working on the computer
you will also be looking for things and seeing things that catch your attention. These things that you are
searching for and things that you see are as important for our observation as thoughts you are thinking
from memory. So please verbalize these too. As you are doing the tasks, I won’t be able to answer any
questions. But if you do have questions, go ahead and ask them anyway so I can learn more about what
kinds of questions the tool brings up that it hasn’t explained. I will answer any questions after the session.
Also, if you forget to talk aloud, I’ll say, “please keep talking.” Do you have any questions about the talk
aloud?

[See if they ask a question]

Now I have some tasks printed out for you. I am going to go over them with you and see if you have any
questions before we start.

[Hand them the tasks.]

Here are the tasks you will be working on. Please read them aloud so you can get comfortable with
speaking your thoughts. Do you have any questions about the tasks?

[See if they ask a question]

You may begin.

Tasks

Task 1: Find a malicious url on the page, and proceed to the page after viewing the details of the url

Task 2: Find the settings page and turn the annotate link feature off

Task 3: Use the tool help menu to read more about the tool’s web redirection features

Task 4: Analyse the details of a url on the webpage

Task 5: Add a url to your whitelist

Task 6: Analyse any url on the page and report it

Task 7: Use the tool to report an issue with the webpage

Thank you for completing the Think Aloud’s. I now have some general questions about your thoughts on
the ease of use of the tool.

Questions

How easy did you find the tool to use?

 Not at all easy

 Not very easy

 Somewhat easy

 Fairly easy

 Extremely easy

Where there any features of the tool that you thought were particularly easy to use?

Where there any features of the tool that you thought were particularly difficult to use?

Is there anything about the tool that you think could be improved?

How likely would you be to use the tool in the future?

 Not at all likely

 Not very likely

 Somewhat likely

 Fairly Likely

 Extremely Likely

For what reason, did you select *insert user’s answer*?

Thank you very much for your participation. It is very much appreciated. Please feel free to take a cookie.

Appendix G

Think Aloud Data Feature Codes

143

Open Codes Themes
More user confirmation;
would like bigger badges to see better;
make size of urls bigger and more clear;
whitelist tooltip should be changed to feature name;
prefer less tutorial content details;
useful to get count of malicious urls on page;

Suggested Improvements

Potential Improvements

Report issue is complex;
not able to report url as expected on alert url;
reported url on page rather than issue;
unsure how to report whole site;
not able to report url as expected on alert url;
confused about difference between report a url and an issue;

Report issues

Thinks whitelist tooltip might be confusing for others;
confused by whitelist location;
thought the whitelist icon was confusing;
doesn’t know what a whitelist is;
whitelist feature is clear;
not able to find whitelist feature easily;

Whitelist comments

Right-click inspection is not a clear feature;
confused by help icon;
confused about main popup site purpose;
difficult finding a malicious link on the page;

Difficulties with tool

Url analysis is clear;
clear warning page;
likes ability to undo action;
likes tutorial more info link;
likes link annotation;
likes design of popup;
likes ability to only see details for anchor tag elements;
likes web redirection feature;
likes reporting feature;
likes the demo site;
likes help icon;
whitelist feature is useful;

Features people like

UI Positives

Understand popup explanation;
understands the badge system;
understands top bar url relativity;

Well understood features

Easy to navigate tutorial;
easy to find settings;
easy to navigate through tool;
easy to find features;
happy with report feature location;

Navigating ease of use

Satisfied with report issue layout;
likes location of report and whitelist;
too much content in help;

Tool layout

Impressed by quality;
very user friendly;
fast to use after learning how to;
right-click on url very easy when found;

User impressions
General Impressions

Thinks tool audience is low technical Confusion of target audience
Right-click on url;
clicks on all the urls;
goes to page to view main popup rather than right-click;
does not check further details;
does check further details;
trys to click on badge for details;

How people are using tool

Appendix H

Think Aloud Qualitative Data

145

Think Aloud Participant Information/Statistics

Participant Date Easy to Use Likely to Use
{1,5} {1,5}

1 08/03/2019 4 5
2 08/03/2019 5 3 Average Ease of Use 4
3 08/03/2019 5 5 Average Likely to Use 4
4 08/03/2019 4 3
5 08/03/2019 5 5
6 08/03/2019 5 5
7 08/03/2019 4 3
8 08/03/2019 3 4

	Introduction
	Overview
	Project Specification
	Results and Accomplishments

	Report Structure

	Phishing
	Phishing Variations
	Spear Phishing

	Phishing Delivery Vehicles
	Attachments
	Uniform Resource Locators (URLs)
	Example of a URL Attack

	Common Indicators of Phishing Attacks
	Email Specific Indicators
	Common URL Manipulation Tricks
	Domain Indicators
	Page Indicators

	Other Phishing Difficulties
	Summary

	Related Work
	Usable Security
	Theoretical Phishing Research
	Automated Phishing Detection
	Automated Security Indicators
	Training Users

	Existing Anti-Phishing Tools
	Further Anti-Phishing Tools

	Summary

	Requirements Gathering
	Initial Concept Design
	Browser Choice
	Identifying the Userbase

	Interviews
	Method Selection and Reasoning
	Methodology
	Results
	Likelihood of Using the Tool
	Recommendation

	Requirements
	Summary

	Design
	Prototyping the User Interface
	Back-end Design Proposal
	Selecting the Algorithm Type
	Decision-Making Algorithm
	Malicious Heuristics
	Safety Thresholds
	Data Sources

	Expert Design Evaluation
	User Interface
	URL Decision-Making
	Evaluation of Design Proposal

	Final Design
	Summary

	Implementation
	Project Timeline
	System Overview
	Components and Interaction
	Choice of Technologies
	Understanding Chrome Extensions

	Extension Infrastructure
	Content Script
	Background Script

	Front-end and User Interaction
	Research Interface Implementation
	Choice of Extension UI Elements and Intervention
	User Support and Understanding

	Decision-Making Server
	Implemented Heuristics
	Unshorten Links
	Chrome Extension API

	Additional Considerations
	Efficiency and Security

	Summary

	Evaluation
	Study Preparation
	Demonstration with System Usability Scale
	Methodology
	Results

	Think Alouds
	Preparation
	Methodology
	Results

	Expert Evaluation
	User Interface
	Implemented Backend
	Further Advice

	Discussion
	Requirements of the Tool

	Summary

	Further Work
	Decision-Making Components
	User Interface Improvements
	Longitudinal Study
	Summary

	Conclusion
	Overview

	Bibliography
	Interview Materials
	Interview Results
	Additional Paper Designs
	Phishing Heuristics Proposal
	System Usability Scale Survey
	Think Aloud Materials
	Think Aloud Data Feature Codes
	Think Aloud Qualitative Data

